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In a recent letter to the editor, Skylakakis (8) examined the
relative rate of replacement of one race of an asexually reproducing
plant pathogen by a second race when both races compete for
available infection sites. An earlier letter to the editor by
MacKenzie (7) and a reply by Groth and Barrett (2) derived
expressions describing the changes in the relative frequencies of
two asexually reproducing pathogen races in the absence of
competition. In this letter, a general treatment of the rate of
replacement of one asexually reproducing race by a second is
offered in which the treatments of MacKenzie (7), Groth and
Barrett (2), and Skylakakis (8) are included as special cases.

If a pathogen population includes two races with numbers, N,
and N, having intrinsic rates of increase, r; and ra, respectively,
then the instantaneous rates of change in the numbers of each race
can be given by:

dN,/dt = riNifi((N,N2) (1)
and
dNa/dt = raNof2( N1, N2) (2)

in which fi(N1,N2) and f2(N,,N;) are functions that modify the
growth rates and combine the effects of intra- and inter-race
competition. With epidemic foliar disease, it is often more
convenient to use the proportion of leaf area affected by disease as
an index of disease severity, in which case the equations become:

dx/dt = rexfi(x,y) (3)

and
dy/dt=rpf(x,p) (4)

in which xand yare the proportions of the leaf area affected by each
of the two races, rcand r, are the respective apparent infection rates
of increase, and f,(x,y) and f,(x,y) correspond to the functions
fi(N1,N2) and f2( Ny, N2) above.

Case 1. If host tissue is not limiting (ie, there is no intra-race
competition and there is no competition or interaction between
races) then fi(N1,N2) = f2( N1, N2) = 1.00 and

dN]fd!'=!‘|N| and dNy/dt = nN; (5)

and the growth equations are those for exponential growth as used
by MacKenzie (7) and Groth and Barrett (2). In equations 3 and 4
there is an implicit assumption that host tissue is potentially
limiting and hence f(x,y) # 1.00 and f, (x,y) # 1.00 although at
very low levels of disease severity f.(x,y), f,(x,y) = 1.00.

Case 2. If host tissue is limiting, then the rates of increase of the
two races may be described by the Lotka-Volterra competition
equations (1):
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dNi/dt=riNi[1 = (N K1) — a(N2/ K1)] (6)
and

dNz/dt = r2Na[1 — B(N1/ Kz2) — (N2 K2)] (7

in which K, and K; are the maximum numbers of race I and race 2,
respectively, that can be maintained by the host tissues (ie, the
“carrying capacities”) and a and B are constants that determine the
form of interaction between the two races: if & =0, then race 2 does
not compete for resources with race 1 and equation 6 reduces to the
logistic growth equation for race 1;if a >0, then race 2 competes for
resources with race | and reduces the amount of resource available
torace 1; if & <O, then the rate of increase of race I is enhanced by
the presence of race 2 (similarly for 8 in equation 7).

For the model of disease severity (equations 3 and 4), we obtain:

dx/dt=rx(l1 —x—a'y) (8)
and

dy/dt=rpy(l —B'x—y) 9
in which @”and B’ correspond to the constants & and 8 in equations
6and7.1fa’=1.0and 8= 1.0, then equations 8 and 9 are identical
to those used by Skylakakis (8).

If K1 = K> = K, then, by dividing both sides of equations 6 and 7
by K, we obtain:

(dN1/ K)[dr = (riNi/ K)[1 = (Ni/ K) = a(N2/ K)]
and

(dN2/ K)/dt = (r2N2/ K) [1 = B (N1/ K) — (N2/ K)]

but Ni/K and N:/K are the proportions of leaf area of the host
infected by race 1 and race 2, respectively, and consequently:

Ni/K=xand N2/K=y.

Thus, relating equations | and 2 to equations 3 and 4 and
permitting the interchangeable use of numbers or disease severity at
this level of analysis.
It then follows from equations 1 and 2 and by inference for
equations 3 and 4 that:
d (Ni/ N2)/dt = [N2(dNi/dt) — Ni (dNa2/d1) ]/ N*
= [ NINoA (N1, N2) — raNiNofa (N1, N2) ] NG

o d(N/ N2)/de = (Ni) N2) [rifi(N1,N2) = rafa (N1, N2) ]
and similarly,

d(x/y)/dt = (x/y) (ref(x,p0) = rfy(x,))

Case 3. If f; (N1,Nz) = f3(N1,N2) = f (N1,N2) = 1.00 as in case |
above, then,

d (Ni/ N2)/de = (N1/ N2) (r1 = r2)



or
d(p/g)/dt=(p/q) (ri—r2)

in which,

p=Ni/(Ni+ N:)and g = N:/(N: + N2)

as obtained by MacKenzie (7) and Groth and Barrett (2).
Case 4. If f(x,y) = f,(x,y) = (I — x — p) as discussed in case 2
above, then:

d(x/p)dt=(x/y) (1 —x—y)(rs—1y)

and the rate of replacement of one race by the other will be slower
than when both races are increasing exponentially in absence of
competition (cf, cases | and 3 above) because (1 — x — y) <1.0.
Since (1 — x — y) will change during the course of an epidemic, the
magnitude of the rate of change of d(x/y)/dr will also change, as
pointed out by Skylakakis (8).

Case 5. If, for example, f; (N1, N2) # f2 (N1, M2), as in the general
Lotka-Volterra competition equations above (case 2), then:

d(N1/N2)/dt = (N1/Nz) {rl[l —(N\/K) — (eN2/ K1)]
= [l = (BN K2) — (Nz:'!('z)]}

and it is possible for the magnitude and direction of d(N:/ N2)/dtto
change during the course of an epidemic, depending on the values
of ri, r2, Ky, K, @, B, and the starting values of Nyand Na. Thus, itis
possible for either race to show a net increase during an epidemic
under different conditions. Similarly, the Lotka-Volterra
competition equations applied to disease severity yield:

d(x/p)/dr=(x/y) (1 = x—a’y) =1, (1 = B'x = p))

By analogy with Haldane’s original method for the estimation of
relative fitness (3), the expression (rifi(Ni,N2) — raf2(N1,N2)) could
be considered to be the “relative fitness” of race 1 to race 2 but this
“relative fitness” will vary during the course of an epidemic unless
there is no intra-race or inter-race competition. When there is
competition, the estimator of “relative parasitic fitness” proposed
by MacKenzie (7), viz “ ....all one needs to do is to subtract the
larger r from the smaller r (less-fit isolate),” is inappropriate.
Indeed, no single numerical “relative fitness” value can describe the
behavior of the ratio of the number (or frequencies) of the two races
when there is competition. Under these conditions it is necessary
for the functions f;(Ni,N2) and f2(N;,N:) to be stated explicitly,
perhaps in the form (fi(N1,Nz) — f2(N1,N2)), as well as the intrinsic
rates of increase, r1 and r», and the estimated values substituted in
the expression or listed with it, ie, the intrinsic rates of increase and
the form of the fitness functions are required to describe the rates of
change in pathogen populations. Similarly, if disease is measured in
terms of disease severity, the apparent infection rates and the
corresponding fitness functions should be used.

Some practical considerations. The models outlined above are
drawn from two sources. Those describing changes in population
numbers are drawn from ecology and their analogues describing
changes in disease severity from plant pathology. In the form of
differential equations in which they have been presented above, itis
possible to show how they are related to one another. However, the
relationship between the different forms of these equations masks
some important differences in the concepts, which underlie the
models and the practical problems in applying them to real data. In
order to clarify this point, the following list describes some of the
main assumptions underlying simple population growth models
and is adapted from Pielou (6):

Assumption 1. Abiotic factors are sufficiently constant not to
affect reproduction and survival rates. In other words, it is assumed
that the parameters in the models are constant and, equally, the
forms of interaction between organisms contained in the models

are assumed to be constant, eg, the form of competition between
different races is constant at all population densities.

Assumption 2. The population either has no age structure or
maintains a stable age structure.

Assumption 3. Reproduction and survival rates respond
instantly, without lag, to population density changes.

Assumption 4. “Crowding” affects all population members
equally.

Assumption 5. Population growth is density dependent even at
the lowest densities.

Assumption 6. The population under study constitutes a single
population; on average, all individuals are exposed to the same
range of factors.

It is only when all of the conditions implicit in these assumptions
are fulfilled that it is possible to consider using the growth
equations, solving them (where solutions exist), estimating the
parameters, and fitting the data to the estimated curves. It should
be immediately clear to any plant pathologist that these
assumptions cannot be fully met in many plant diseases. Indeed,
Vanderplank (9) pointed out that despite the superficial similarity
between the logistic growth equation and his equations describing
rates of change in disease severity, the equations are not identical
because assumption | (above) cannot be met in most plant diseases.
However, it is implicit in his argument that all of the other
assumptions are assumed to be more or less fulfilled. Consequently,
he stresses that the application of his equations can only be applied
during very short intervals of time, although he does concede that
“where rstays nearly constant over the whole observed course of an
epidemic,” the logit transformation allows r to be estimated. In this
case, the application of his equations is identical to that of the
logistic equation (see above). His derivation of R (the basic
infection rate) and R. (the corrected basic infection rate) represent
a further attempt to overcome some of the other assumptions
implicit in his model. Despite the distinction between logistic
growth and infection processes so heavily stressed by Vanderplank,
the logit transformation appears to be one of the most popular
ways of fitting disease progress curves. Much of the development of
the theory of disease progress is based on the assumption, either
explicitly or implicitly, that the logistic growth equations
adequately describe epidemic development (eg, Jowett et al [4]).
Indeed, Zadoks and Schein (10) define r as the “apparent infection
rate” or “the logistic infection rate.”

Furthermore, a consideration of the mathematical assumptions
on which the exponential growth, logistic growth, and Lotka-
Volterra-type competition equations are based reveals that the
equations themselves are simplifications of more complex
expressions selected as the simplest mathematical expressions with
the required behavior, mathematical tractability, and parameters
that can be interpreted as having biological meaning (Lotka [5]).

A major difference between the models of infection processes
developed by Vanderplank (9) and the logistic growth model is that
the resource exploited by the pathogen or parasite is itself a living
organism that may be growing. Consequently, the estimation of the
apparent infection rate confounds the intrinsic rate of increase of
the pathogen or parasite with the growth rate of the host plant,
since “disease severity” is standardized to an estimate of the total
available host tissue, which itself may be changing during the
course of an epidemic. The consequences of this will be quite
different in the logistic model and in the disease severity model. In
the former, expansion of host tissue will appear as a change in the
“carrying capacity,” K, but in the latter as a change in the apparent
infection rate, r. It is not difficult to envisage a situation in which
the application of the logistic equation will give a positive rate of
change in the number of infections but a negative rate of change in
disease severity. Indeed this can sometimes be observed in spring
cereals infected with foliar diseases in the U.K. at the tillering stage
of growth, when plants seem to “grow away from the disease.”

Both population growth and disease severity models have a place
in plant pathology, but their use and interpretation must be
tempered with an appreciation of the underlying assumptions on
which they are built.
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