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1 Why Derive Decision Rules?

1.1 Decision Support Systems (DSS)

The production and availability of decision support systems (DSS) as aids in applying or using
disease control methods have become common in contemporary agriculture, perhaps because
it has become easier to obtain and process the data that are needed to provide this kind of
advice. Another factor affecting adoption of DSS is the ability to reach large audiences with
relatively little effort. While increased availability of this kind of information is undoubtedly a
benefit for most users, the quality of such information should be sufficient to allow maximiza-
tion of the economic and environmental benefits that can result from the use of such systems.
Thus, other ways of development of such systems could be useful. In addition, clear and
objective methods are needed to evaluate and compare different DSS, although the ultimate
criterion is adoption by the end-users.

While we tend to think of DSS as something new, possibly connected with computers
and the Internet, the concept of predicting diseases and pests predates computers. The Mills
rules for predicting apple scab (14) are an example of prediction rules (or risk algorithms as
they will be referred to herein) that existed long before the Internet. Other early sets of deci-
sion rules include those that were used to predict potato late blight, caused by Phytophthora
infestans (9), and Alternaria leaf blight of carrots, caused by Alternaria dauci (5). In these
examples, users are given a number of questions related to disease development or risk, and
depending on the answers, a number of risk ’points’ are calculated. If the sum of these ’points’
exceeds a pre-determined threshold, then some sort of disease intervention (often in the form
of pesticide application) is recommended.

Where do these risk algorithms come from? Experience and subjective judgment, cou-
pled with revision based on the performance of the rules, is one way in which they can be
developed. This can be a lengthy process. For example, 20 years of experience were required
for the publication of the Mills apple scab rules (10). Other problems include geographic
specificity, variations in host plant resistance, or changes in climatic conditions.

If suitable data sets are available, logistic regression provides a way to verify and calibrate
risk algorithms. This is one method by which categorical outcomes (the dependent variables)
can be related to a variety of different independent variables, whether these are continuous or
categorical in nature. While plant disease epidemiologists like to think in quantitative terms
with respect to disease, farmers are often more interested in qualitative outcomes, such as the
need to apply a fungicide. Reformulating the question from How much disease will occur?,
with a quantitative answer, to a question like Should I spray my field?, with a qualitative an-
swer entails use of different techniques that are covered here. The first part of the following
article gives a brief introduction to generalized linear models, how logistic regression repre-
sents one type of such a model, and how to program these analyses using SAS. There are other
ways to derive these algorithms, but they aren’t covered here.

A related issue is how one can judge the performance of the risk algorithm. If these
systems are not perfect, there are different types of errors that can be made. The use of
receiver operating characteristic curves (ROC curves) is one way of graphically examining the
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different types of errors. This method also provides a way by which different risk algorithms
can be compared. The use of ROC curves is presented in the second part of this article.
Finally, the relationship of the performance of the risk algorithm (in terms of specificity and
sensitivity) and the probability of disease is determined by a number of factors, but Bayes’s
theorem provides a method to derive this relationship. The use of Bayes’s theorem in disease
is presented in the third part of this article. For each section, sample SAS programs and data
sets are also available.

This material is presented in two forms.

• For on-line reading with a browser it can be viewed at
http://www.apsnet.org/education/AdvancedPlantPath/Topics/DDR/default.htm.

•  This pdf version that will facilitate saving and convenient and consistent printing of
the entire document.

The SAS programs and data files are available as a separate archive, or can be loaded individ-
ually via the on-line html version.

1.2 Further Reading

An introductory text on plant disease epidemiology (2) can provide additional background
on disease forecasting. Many of the methods used in this article can be traced to clinical
epidemiology, which is a branch of medicine, and an introduction to this field (16) could be
useful background. An early article on the use of these medical techniques in plant disease
forecasting (21) is a shorter introduction to this material.

The Plant Health Instructor, 2006 Decision Rules, page 5



2 An Introduction to General Linear Models

Generalized Linear Models (12), here abbreviated as GLM (not to be confused with proc
glm in SAS which we will use briefly) is a concept that unifies many different types of statis-
tical models. These models include:

• t tests

• Analysis of Variance

• Multiple Regression

• Analysis of Covariance

• Logistic Regression

• Poisson Regression

• Analysis of Dilution Assays

• Probit Analysis

2.1 Components of a GLM

A GLM has several components. These are:

Random Component: This concerns the dependent variable, and we allow for a discrepancy
between observed and ’true’ (undoubtedly unknown) values. Traditionally the observed
values of the dependent variable are denoted by y.

Systematic Component: The independent variables. Covariates (usually denoted by xj) and
their unknown parameters (usually denoted by βj).

The product of each covariate and its parameter are summed. Assuming we have p

covariates:

x1β1 + x2β2 · · ·xpβp

Mathematically, it is often written like this

p
∑

j=1

xjβj

Within the context of a GLM, this is often referred to as the linear predictor (LP), and
is referred to with the Greek letter η, pronounced eta. Thus,
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η =
p

∑

j=1

xjβj

but I will generally refer to it as the linear predictor.

Link: A link between the systematic component and the dependent variable. This can be
(in simple cases) an identity function (=), where the systematic component (including
the independent variables) is equal to the dependent variables plus the error specified
by the random component. In other GLM’s, this link can be some other mathematical
function, such as logarithm, logit, or complementary log-log (CLL). The link is often
referred to as g.

Table 1 lists some of the common types of GLM’s. Traditionally, t-tests and ANOVA were
considered to be different from multiple regression, but the only difference is that the former
use categorical independent variables and the latter uses continuous variables. This distinction
is discarded within the GLM-concept.

Analysis Random Part Systematic Part Link
t tests Normal Categorical Identity
ANOVA Normal Categorical Identity
Multiple Reg Normal Continuous Identity
Analysis of Cov Normal Cat. & Cont. Identity
Logistic Reg Binomial Cat. & Cont. Logit
Poisson Reg Poisson Cat. & Cont. Log
Dilution Assays Binomial Cat. & Cont. CLL
Probit Analysis Binomial Cat. & Cont. Probit

Table 1: Structure of Some Common General Linear Models.

2.2 A Simple GLM

A conventional t-test can be formulated as a GLM. We observe a series of values from one of
two groups. We assume that these are the result of a random variable and a true mean for each
of the two groups. It is assumed that these random variables are independent, and that they
have a normal distribution with mean zero.

In the systematic component, we can assign observations to one of two groups. To do this,
we use indicator variables (which can take the value of 0 or 1) to assign group membership
to each observation. For a t-test the random and systematic parts of the GLM are coupled
together with the identity function.
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2.3 A numeric example of a simple GLM

Here we will use SAS proc glm to fit some simple GLM’s. This procedure uses an identity
link function with normally distributed errors and uses ’least-squares’ to estimate the param-
eters. The SAS program is present in the file dagis.sas, and will be shown here in Courier
text:

Like this

while my comments appear in this font.
All SAS program lines end with a semicolon, and SAS ignores lines that begin with an

asterisk. Thus, the following line does nothing but supply us with information.

* simple linear regression;

The next line gives us some printing options. I’ll eliminate this material in the future
listings, though they will be present in the program files.

options linesize=75 pagesize = 64;

SAS works with data sets, which have to be given names. Here we create a data set called
dagis, and read 4 variables directly into it with the cards statement. The four variables are
sex (a character variable), wt, height, and ones. The variable ones takes the value of 1 for all
observations. Data are arranged in a rectangular matrix, with observations corresponding to
the rows, and different variables in each column.

data dagis;
input sex $ wt height ones;
cards;
M 17 110 1
M 15 105 1
M 12 100 1
F 15 104 1
F 16 106 1
F 14 102 1

run;

The next portion of SAS code uses proc gplot to produce some graphs:

proc gplot;
plot height*wt;
plot wt*height;

run;
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The next two statements fit a linear model or GLM. In the first, the dependent variable is
height, and the independent variable is wt. This is reversed in the second model. This pattern
(the dependent variable followed by the = sign, and then the independent variables) is one we
will see in proc genmod. Note that both height and weight are continuous variables.

proc glm;
model height = wt;

run;

We can also fit a GLM with wt as the dependent variable and height as the LP.

proc glm;
model wt = height;

run;

The next model uses the class statement to create indicator variables for sex, because
this is a categorical variable. These indicator variables are then used as the independent vari-
ables in the model. If we want to see the actual parameter estimates for each of the indicator
variables, we need to give the solution option after the ’/’ in the model statement.

proc glm;
class sex;
model wt = sex /solution;
means sex;

run;

SAS proc glm fits (by default) an intercept term in all models. This can be replaced
by our variable ’ones’, and the intercept term provided by SAS is removed with the noint
option.

proc glm;
class sex;
model wt = ones sex /noint solution;
means sex;

run;

The information provided by the indicator variables together with the intercept term is
overlapping (aliased). SAS eliminates one of these variables. In the two previous examples,
the aliased variable removed was the last one (i.e. the indicator variable that was equal to one
when sex was ’M’). This is only one way (of many possible ways) to deal with the aliasing.
If we remove the intercept to avoid aliasing, the model fit is the same, but the parameters are
different. In the first two examples with the intercept term, the intercept parameter represents
the weight of the boys, and the parameter estimate for the girls is the difference between the
weight of the girls and the boys.
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proc glm;
class sex;
model wt = sex /noint solution;
means sex;

run;

Without the intercept term, the regression parameters for the indicator variables created
for sex represent the average weight of the boys and the average weight of the girls.

Models can also combine both continuous variables and the indicator variables created by
the class statement. Interpretation of the parameters from these models is taken up later.

proc glm;
class sex;
model wt = height sex /solution;

run;

In this model, we assume an effect of height on weight, and an effect of sex on weight.

proc glm;
class sex;
model wt = height sex sex*height /solution;

run;

In the previous model, we can also examine an interaction between sex and height in
addition to the effect of height and sex.

proc glm;
class sex;
model wt = sex sex*height /noint solution;

run;

The final model is exactly the same as the one before (an effect of sex, an effect of height,
and an interaction between them), but we calculate the parameters differently, so that we
obtain the intercept and slope of the two lines predicting weight as a function of height, one
for the boys and one for the girls.
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3 Unconditional Logistic Regression

Unconditional logistic regression (often referred to as logistic regression) is also done with
a GLM, but using a different link function and different errors. In this case, the outcome
consists of the number of successes that resulted from a given number of trials. For example,
we may flip a coin 25 times and note the number of times it shows heads. Assume that it
comes up heads 14 times. The number of trials in this case is 25, and the number of successes
14. Since the outcome is a proportion, we can use the binomial error distribution in our GLM.
The systematic component can be a mixture of categorical or continuous variables. They
must have a linear relationship to each other, but that is true of all linear predictors. In logistic
regression, we use the logit (logistic transformation) as the link function.

We define

logit(y) = ln
y

1 − y

Plant pathologists and disease epidemiologists will recognize the logistic transformation.
For a compound interest disease, a plot of the the logit transformed disease proportion over
time approximates a straight line, the slope of which is the parameter r, the apparent infection
rate (19). Logistic regression can be used to calculate r if disease incidence is the measure
and you know numbers of plants (not just proportions or percent).

In logistic regression, we therefore relate the logit of the proportion to the linear predictor.
The discrepancies between the observed proportion of events and the true proportion of events
is accounted for by allowing the predicted proportion to have a binomial error distribution.

Figure 1 gives a graphical representation of the logistic transformation. Equipped with the
logit (equation 1), you can easily calculate the proportion (equation 2). Note that the logit of
zero or one is not defined.

y = ln
p

1 − p
(equation 1)

p =
ey

1 + ey
=

1

1 + 1

ey

(equation 2)

In practice, we can no longer use least-squares (the technique used in proc glm and
proc anova) to estimate the logistic models. Most modern techniques rely on a numer-
ical solution, where the initial estimates are continually refined until they can be no longer
improved (i.e. maximize the likelihood). The examples presented here are based on proc
genmod in SAS, which is much like the original program GLIM (4) originally written to
estimate these general linear models.

Proc genmod uses a technique called Newton-Raphson to maximize the likelihood of
the regression parameters (the β’s in the LP), given the data that were observed. This likeli-
hood maximization is akin to climbing a hill, where a hiker can estimate the position of the
top of the hill given the slope and how curved the surface is. This technique also calculates
the ’curviness’ of the likelihood surface, and this information is used to calculate the standard
error of the estimates.
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A likelihood curve might look like figure 2, which is from a case control example pre-
sented by Ahlbom (1).

3.1 A Numeric Example

Logistic regression can be used to analyze contingency table data that compare the prediction
of disease with the actual outcome. Suppose that the data are arranged as in table 2.

Predictor
True status Spray Don’t Spray Total
Diseased A B A+B
Not Diseased C D C+D
Total A+C B+D A+B+C+D

Table 2: A 2 x 2 table with predictions and actual outcomes.

One measure that could be used to evaluate these data is the odds ratio. This would be
the odds of disease occurring in the fields where a spray is predicted, compared to the odds of
disease occurring in the fields where the sprays are not predicted. This would be calculated as

A
C
B
D

P

0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1 . 0

Y

- 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5

Figure 1: Proportion ’p’ as a function of logit(p).
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0 . 0 0

0 . 4 7

0 . 9 3

1 . 4 0

B 1

- 1 . 4 0

- 0 . 9 3

- 0 . 4 7
0 . 0 0

B 0

L L

- 2 8 8 . 0 6

- 2 7 0 . 0 7

- 2 5 2 . 0 9

- 2 3 4 . 1 1

Figure 2: Likelihood surface, with the logarithm of the likelihood (LL) plotted as a function
of the regression parameter estimates B0 and B1.

or

AD

BC

using the information presented in table 2.
This is also the method used for case/control studies in human epidemiology. A detailed

description of the rationale behind case/control studies is outside the scope of this article, but
in the calculation of the odds ratio, the unequal sampling of cases and controls appears in
both the numerator and the denominator, and is thus cancelled out. For further information
specifically on these types of studies, an introductory textbook in human disease epidemiology
such as Ahlbom’s text (1), or Hosmer and Lemeshow (6) would be a good starting point.

We can use the data presented by Jones (8) on the use of disease incidence at growth stage
30 to predict the profitability of a fungicide application, where an application was recom-
mended if more than 20% of the tillers were infected. The data were arranged in a 2 x 2 table
(table 3).

These data would have an odds ratio (OR) of

(28)(7)

(10)(13)
= 1.5. (equation 3)

A simple example of such a data set might be one where each line consists of information
on a single field. If we choose this arrangement, then the data file would have 58 lines. The
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first 28 lines (representing cell A) might look like this:

1 dis_pred

where the 1 represents the true status (a treatment was justified) and dis pred represents
exceeding 20% infected tillers at GS 30.

This would be followed by 13 lines (cell B) like this:

1 nod_pred

Cell C would be represented by 10 lines like this:

0 dis_pred

and cell D would be 7 lines like this:

0 nod_pred

The data file could be read in like this, assuming the data file is called ’eyespot.dat’.

data eyespot;
infile ’eyespot.dat’;
input true_d dis20 $ ;
atrisk=1;
run;

This would read in the two variables and create a third, called atrisk, which is always equal
to one. We use this as the denominator in the regression. We can perform the regression by
invoking proc genmod.

proc genmod;
class dis20;
model true_d/atrisk = dis20/link=logit error=binomial;

run;

predictor
apply treat-
ment

withhold
treatment

total

True sta-
tus

treatment
justified

28 13 41

treatment
not justified

10 7 17

Table 3: Eyespot predictor.
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In proc genmod we must specify a link function and an error distribution, which for
logistic regression are logit and binomial, respectively. The dependent variable consists of
two parts for logistic regression. The first is the outcome variable (true d in this case), and
the other is the number of trials. Since each field represents a trial in this data set, this is the
variable atrisk, which is always equal to one. The class statement is used with the variable
dis20 to create indicator variables. SAS sorts variables in alphabetical order, and thus the
nod pred group becomes the reference group.

The file eyespot.dat and the SAS program simple.sas should be available for you to try this
regression yourself. Output from the program simple.sas is presented in figure 3.

The first section presents a summary of the type of model that is being fitted, followed by
information on the class variables. Various measures of goodness of fit come next, followed
by parameter estimates. One can see that the estimate for dis20 when it takes the value of
dis pred is 0.4106. This is the natural logarithm of the odds of disease exceeding the economic
threshold in those fields where disease was predicted, compared to the odds of disease in the
fields where disease was not predicted. As would be expected,

e0.4106 = 1.50

which is the same as what we get from calculating the odds ratio by hand. (equation 3).
The odds of disease exceeding the economic threshold for those fields where there was no

prediction of disease is

13

7
= 1.857

This number can also be found in the SAS output as as the intercept term, although the
number presented is the natural logarithm, i.e.

e0.6190 = 1.857

3.2 Another Numeric Example of Logistic Regression

In this example from a book for ecologists (3), the data are grouped, so that we have a number
of trials, and a number for the outcome on each line. In addition, we need the independent
variable. This was an experiment where approximately 40 insects were placed in petri dishes,
and exposed to varying levels of a chemical. After a fixed period of time, the number of
insects killed by the chemical were counted.

Here we read the file dishes.dat and have the variables dose (a continuous variable), the
number of dead insects (the dependent variable) and the variable initial (the number of insects
placed in each dish). In addition we create a second dependent variable by calculating the
natural logarithm of dose.

The data file dishes.dat is an ordinary text file that looks like this:

1 2 40
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The SAS System                                1
14:03 Wednesday, October 2, 2002

The GENMOD Procedure

Model Information

Data Set                      WORK.EYESPOT
Distribution                      Binomial
Link Function                        Logit
Response Variable (Events)          true_d
Response Variable (Trials)          atrisk
Observations Used                       58
Number Of Events                        41
Number Of Trials                        58

Class Level Information

Class      Levels    Values

dis20           2    dis_pred nod_pred 

Criteria For Assessing Goodness Of Fit

Criterion                 DF           Value        Value/DF

Deviance                  56         69.6993          1.2446
Scaled Deviance           56         69.6993          1.2446
Pearson Chi−Square        56         58.0000          1.0357
Scaled Pearson X2         56         58.0000          1.0357
Log Likelihood                      −34.8496                

Algorithm converged.                                                       

Analysis Of Parameter Estimates

Standard   Wald 95% Confidence      Chi−
Parameter              DF   Estimate      Error          Limits          Square

Intercept               1     0.6190     0.4688    −0.2998     1.5379      1.74
dis20       dis_pred    1     0.4106     0.5962    −0.7580     1.5792      0.47
dis20       nod_pred    0     0.0000     0.0000     0.0000     0.0000       .  
Scale                   0     1.0000     0.0000     1.0000     1.0000          

Analysis Of Parameter Estimates

Parameter              Pr > ChiSq

Intercept                  0.1867
dis20       dis_pred       0.4911
dis20       nod_pred        .    
Scale                            

NOTE: The scale parameter was held fixed.

General Model
information

Goodness
of fit

where disease was not predicted)

This value represents the log(odds of disease in the fields where

Intercept (0.6190) = log(odds of disease when no disease was predicted)

Important Estimates and standard errors

disease was predicted divided by the odds of disease in the fields

Figure 3: Output from a simple logistic regression from the eyespot data.

The Plant Health Instructor, 2006 Decision Rules, page 16



2 4 40
5 8 38
10 11 40
20 19 39
50 28 40
100 38 40

The SAS code to read in the data looks like this:

data bugs;
infile ’dishes.dat’;
input dose dead initial;
ldose = log(dose);

run;

We then run proc genmod. The dependent variable has two parts, the outcome (dead)
and the denominator (the number of trials, in this case the variable initial). This is followed by
the dependent variable (dose), and then a slash (/). We then tell genmod which link function
we are using (logit link) and what error distribution we are using. Binomial errors can be
abbreviated with the letter b.

proc genmod;
model dead/initial = dose /

link=logit error=b;
run;

Output is presented in figure 4. Since there was no class statement, this information is
missing from the output. In addition, the regression parameter for dose (which is a continuous
variable here) represents the change in the logarithm of the predicted odds of an insect dying
as the dose changes.

proc genmod;
model dead/initial = dose /

link=logit error=b;
run;

Crawley also suggested fitting the logarithm of dose as the independent variable. This is
easily done with the following SAS statements, and the output can be seen in figure 5.

proc genmod;
model dead/initial = ldose

/link=logit error=b;
run;

The sas programs for reading the data and fitting these models can be found in the file
bugs.sas.
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The SAS System                              1
16:56 Wednesday, October 2, 2002

The GENMOD Procedure

Model Information

Data Set                         WORK.BUGS
Distribution                      Binomial
Link Function                        Logit
Response Variable (Events)            dead
Response Variable (Trials)         initial
Observations Used                        7
Number Of Events                       110
Number Of Trials                       277

Criteria For Assessing Goodness Of Fit

Criterion                 DF           Value        Value/DF

Deviance                   5         10.7641          2.1528
Scaled Deviance            5         10.7641          2.1528
Pearson Chi−Square         5          9.9593          1.9919
Scaled Pearson X2          5          9.9593          1.9919
Log Likelihood                     −128.8046                

Algorithm converged.                                                       

Analysis Of Parameter Estimates

Standard       Wald 95%          Chi−
Parameter  DF  Estimate     Error   Confidence Limits   Square  Pr > ChiSq

Intercept   1   −1.7369    0.2074   −2.1434   −1.3304    70.12      <.0001
dose        1    0.0534    0.0071    0.0394    0.0674    55.81      <.0001
Scale       0    1.0000    0.0000    1.0000    1.0000                     

NOTE: The scale parameter was held fixed.

Figure 4: Output from a simple logistic regression from the insect data.
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The SAS System                              2
16:56 Wednesday, October 2, 2002

The GENMOD Procedure

Model Information

Data Set                         WORK.BUGS
Distribution                      Binomial
Link Function                        Logit
Response Variable (Events)            dead
Response Variable (Trials)         initial
Observations Used                        7
Number Of Events                       110
Number Of Trials                       277

Criteria For Assessing Goodness Of Fit

Criterion                 DF           Value        Value/DF

Deviance                   5          4.9425          0.9885
Scaled Deviance            5          4.9425          0.9885
Pearson Chi−Square         5          4.3623          0.8725
Scaled Pearson X2          5          4.3623          0.8725
Log Likelihood                     −125.8938                

Algorithm converged.                                                       

Analysis Of Parameter Estimates

Standard       Wald 95%          Chi−
Parameter  DF  Estimate     Error   Confidence Limits   Square  Pr > ChiSq

Intercept   1   −3.2694    0.3907   −4.0352   −2.5037    70.02      <.0001
ldose       1    1.1184    0.1309    0.8619    1.3750    73.00      <.0001
Scale       0    1.0000    0.0000    1.0000    1.0000                     

NOTE: The scale parameter was held fixed.

Figure 5: Output from insect data with logarithm of dose as the independent variable.
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4 Logistic Regression with Several Variables

In practice, we have several independent variables. The simplest multivariate models might
only have one additional variable, perhaps some sort of blocking factor. Here is a simple ex-
ample with measurements of plant damage at different ozone levels (11). Beans were exposed
to 3 levels of ozone in growth chambers with 4 different sections in each chamber.

Chamber section
Ozone (in ppm) Injury A B C D
0 low 54 50 39 53
0 high 9 12 19 10
0.20 low 11 15 9 5
0.20 high 36 52 61 47
0.40 low 3 1 2 1
0.40 high 56 63 62 46

Table 4: Stratified data for logistic regression.

The data can be read directly into SAS using the cards statement. The data and the analyses
are in the file strata1.sas.

data ozone;
input ozone status $ section $ number ones;
injury=(status=’high’);
cards;
0 low A 54 1
0 low B 50 1
0 low C 39 1

...more data lines follow

In this case we input the data with two additional variables. The first is a frequency variable
indicating the number of plants. The other one is the section of the chamber. We also create
a binary variable that takes the value of 1 when the injury is ’high’ and is otherwise 0. The
original data appear in tabular form in table 4.

To perform an analysis with these data using genmod, one can use the freq statement
to indicate that the variable number represents the frequency of that observation. We then run
two models, one with only section, and another with both section and ozone exposure in the
class statement (to create indicator variables for both) and in the model statement.

proc genmod;
freq number;
class section ;
model injury/ones= section ozone/
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link=logit error=b ;

proc genmod;
freq number;
class section ozone;
model injury/ones= section ozone/

link=logit error=b ;

The SAS program strata1.sas gives us regression results for two analyses. The first one
presents only the results of including the chamber section as an independent variable (fig-
ure 6).

The second page (figure 7) shows the effect of including both ozone and chamber section
in the analyses.

We can perform a likelihood ratio test (table 5) to determine the importance of the variable
’ozone’ We do this by calculating the difference in -2 times the log-likelihood between the
two models, and then comparing this amount to a χ2 distributed variable, with the number of
degrees of freedom equal to the difference in degrees of freedom between the two models.

Model -2 x log(Likelihood) d.f.
Section 908.4375 712
Section plus ozone 517.1320 710
Difference 391.3055 2

Table 5: A Likelihood Ratio Test for ozone exposure, adjusted for section.

The difference between the two models is then checked against a χ2 distribution. In this
case, we hardly need to look at a table, since the difference (391) is highly significant with
only two degrees of freedom, indicating that ozone affects plant damage.
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The SAS System                                1
18:40 Wednesday, October 2, 2002

The GENMOD Procedure

Model Information

Data Set                        WORK.OZONE
Distribution                      Binomial
Link Function                        Logit
Response Variable (Events)          injury
Response Variable (Trials)            ones
Frequency Weight Variable           number
Observations Used                       24
Sum Of Frequency Weights               716
Number Of Events                        12
Number Of Trials                        24

Class Level Information

Class        Levels    Values

section           4    A B C D   
ozone             3    0 0.2 0.4 

Criteria For Assessing Goodness Of Fit

Criterion                 DF           Value        Value/DF

Deviance                 712        908.4375          1.2759
Scaled Deviance          712        908.4375          1.2759
Pearson Chi−Square       712        716.0000          1.0056
Scaled Pearson X2        712        716.0000          1.0056
Log Likelihood                     −454.2188                

Algorithm converged.                                                       

Analysis Of Parameter Estimates

Standard       Wald 95%          Chi−
Parameter     DF  Estimate     Error   Confidence Limits   Square  Pr > ChiSq

Intercept      1    0.5572    0.1633    0.2372    0.8772    11.65      0.0006
section    A   1   −0.1616    0.2264   −0.6053    0.2822     0.51      0.4755
section    B   1    0.0973    0.2229   −0.3395    0.5342     0.19      0.6623
section    C   1    0.4866    0.2317    0.0324    0.9408     4.41      0.0357
section    D   0    0.0000    0.0000    0.0000    0.0000      .         .    
Scale          0    1.0000    0.0000    1.0000    1.0000                     

NOTE: The scale parameter was held fixed.

Figure 6: Output from the ozone data with only chamber section.
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The SAS System                                2
18:40 Wednesday, October 2, 2002

The GENMOD Procedure

Model Information

Data Set                        WORK.OZONE
Distribution                      Binomial
Link Function                        Logit
Response Variable (Events)          injury
Response Variable (Trials)            ones
Frequency Weight Variable           number
Observations Used                       24
Sum Of Frequency Weights               716
Number Of Events                        12
Number Of Trials                        24

Class Level Information

Class        Levels    Values

section           4    A B C D   
ozone             3    0 0.2 0.4 

Criteria For Assessing Goodness Of Fit

Criterion                 DF           Value        Value/DF

Deviance                 710        517.1320          0.7284
Scaled Deviance          710        517.1320          0.7284
Pearson Chi−Square       710        734.7175          1.0348
Scaled Pearson X2        710        734.7175          1.0348
Log Likelihood                     −258.5660                

Algorithm converged.                                                       

Analysis Of Parameter Estimates

Standard       Wald 95%          Chi−
Parameter       DF  Estimate     Error   Confidence Limits   Square  Pr > ChiSq

Intercept        1    3.6159    0.4439    2.7459    4.4859    66.36      <.0001
section    A     1   −0.5161    0.3303   −1.1635    0.1313     2.44      0.1182
section    B     1   −0.2350    0.3183   −0.8589    0.3889     0.55      0.4603
section    C     1    0.4121    0.3221   −0.2193    1.0435     1.64      0.2008
section    D     0    0.0000    0.0000    0.0000    0.0000      .         .    
ozone      0     1   −4.9212    0.4203   −5.7449   −4.0975   137.11      <.0001
ozone      0.2   1   −1.9413    0.4231   −2.7705   −1.1120    21.05      <.0001
ozone      0.4   0    0.0000    0.0000    0.0000    0.0000      .         .    
Scale            0    1.0000    0.0000    1.0000    1.0000                     

NOTE: The scale parameter was held fixed.

Figure 7: Logistic regression with both section and ozone included.
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5 Deviance and Goodness of Fit

A model attempts to replace the observed y’s with fitted values. In general, these fitted values
do not agree exactly with the observed values. It is quite easy to see that small discrepancies
are permissable, whereas large ones are not.

We can think of model construction as a process where more and more variables are added
to the LP. The simplest model has only one parameter, representing the mean value. The most
complicated model has one parameter for each observation. The simplest model (the mean
only) generally gives little insight into the processes behind the data. The most complicated
model (often referred to as a saturated model) is also of little use, since it merely replaces the
observations themselves with an equal number of regression parameters. Since the goal of our
statistics is to condense the information, this full model is, in practice, of little use.

For a given set of data, there will be larger discrepancies for the simpler model, and smaller
discrepancies for the more complicated models.

There are a number of different measures of goodness of fit but the ones most commonly
used in GLM’s are the deviance and Pearson χ2.

The deviance is formed from the logarithm of the ratio of two likelihoods. One of these
is the likelihood of the current model. The other is the likelihood of the saturated model.
Deviance (D) is calculated as follows:

D = −2 log
(

current

saturated

)

Where current and saturated are the likelihoods of the current and saturated models,
respectively.

Note that we can manipulate this formula so that

D = −2 log (current) + 2 log (saturated)

In practice, if we have single fields (as in the eyespot data) or plants (such as the ozone
data) in each strata, so that the number ’atrisk’ in each observation is equal to 1, the likelihood
of a saturated model is 1, and the deviance reported for the model equals 2 times the log like-
lihood of the current model. If we have grouped data (such as the insect data), the likelihood
of the saturated model is no longer 1. If this is the case, then the ’deviance’ reported by SAS
is no longer equal to -2 times the log-likelihood.

These represent the two ways in which data for logistic regression can be entered. In
practice, if we confine the likelihood ratio statistics that we calculate to the differences between
two models, it matters little which way we enter the data. Where it makes a difference is in the
interpretation of the residual deviance figure from a single model. If we have data observations
consisting of many trials with a given number of outcomes as the dependent variable (i.e. the
denominator in the model statement is not one), then the residual deviance is a reasonable
indicator of goodness of fit. If this is not the case, and the data consist of single trials, then
the goodness of fit must be determined by some other means. One of these is the Hosmer-
Lemeshow test, which is covered in their book (6).
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The other measure of goodness of fit is the Pearson χ2 statistic which takes the form

χ2 =
∑ (y − µ̂)2

V (µ̂)

where V (µ̂) is the variance function for the distribution. For the normal link, this is the
residual sums of squares, but for the binomial or poisson error, this is the original Pearson χ2

statistic.
Either of these can also be divided by the scale parameter in the case of over-dispersed

data.
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6 A Detailed Analysis with Analysis of Deviance

In practice, one often has many different variables, some of which may be related to each
other. This means that variables that are insignificant by themselves may become significant
when others are added. The opposite may also occur, in that variables may contain similar
information, so that they are significant by themselves, but lose significance when the related
variables are added. In either case, this means that the results of a single regression is often
insufficient to evaluate which variables should be included.

6.1 An initial look at the data

A strategy that is often used (at least for the initial selection of variables in a regression) is
to fit all the variables by themselves at first, and then include all the variables in a regression.
A suitable subset of variables can then be selected, based in part on significance level by
themselves or together with other variables, in part on subject-matter considerations and then
tested in a model.

Another strategy is to add the variables to a model, making it increasingly complex. Still,
one must use the subject matter considerations in adding the different variables.

One extra feature in the SAS genmod procedure that makes this easier is the type1 and
type3 options that can be included at the end of the model statement. These generate tables
that describe the change in deviance that roughly corresponds to the type1 and type3 sums
of squares on other SAS procedures. The type1 table describes the changes in deviance as
variables are added to the model (the order being the same as that in the model statement),
whereas the type3 table documents the changes that occur when the variable is added last.

For this example, we use the data on occurrence of Sclerotinia stem rot (caused by Sclero-
tinia sclerotiorum) in canola. Consult the original paper (21) for additional details about this
study. The data are available in a text file risk.txt and values are delimited by the tab character.
It can be read in with the following statements which can be found in the file can rd.sas.

data riskset;
infile ’risk.txt’ lrecl=200 firstobs=2
delimiter=’09’x;
* the data are tab (09hex) delimited;
input nr ycd teear omr $ raps $ qual $

angr nyr $ p_inf $ peas $
foliage $ june $ rain2 $ forec $
apo_r $ tidan aponum nr2;

if nyr = ’a’ then nyr = ’b’;
* number of years 1-4 years highest risk group;
if p_inf = ’d’ then p_inf=’z’;
*make 0 last time reference prev inf;
if apo_r = ’a’ then apo_r=’b’;
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*condense ref group to 0-5 apothecia;

angr2 = angr*2;
if angr > 20 then need = 1;
else need = 0;
at_risk=1;

run;

Recoding of some of the variables also takes place in this data step, and the dependent
variable, need, is established. A simple model to examine the effect of one of the variables
(nyr in this case) would then appear as the following

proc genmod;
class nyr;
model need/at_risk = nyr /

link = logit
error = binomial
type1;

run;

You could load the file can rd.sas and type in the above lines to fit this model. Since
much of the programming is repeated for the single variable models, however, there is another
approach to fitting these variables. In the file can single.sas there is a SAS macro that is used
to run the single variable models

%macro onefit(varname);
proc genmod;

class &varname;
model need/at_risk = &varname /

link = logit
error = binomial
maxit=100
type1;

run;
%mend;

This macro is then used as follows, saving us a little writing, though the output is not
shown here. For the sake of simplicity (if one can consider 6 variables simple) we focus our
attention on only a subset of of the variables. These can be fit with the remainder of the
program in can single.sas.

%onefit(nyr); * number of years since last crop;

The Plant Health Instructor, 2006 Decision Rules, page 27



%onefit(p_inf); * previous infection level of last crop;
%onefit(foliage); * foliage density;
%onefit(june); * rain in june;
%onefit(forec); * weather forecaset;
%onefit(apo_r); * apothecia development;

This is a rather lengthy output, and we should direct our attention on the explanatory value
of each of the variables when fitted singly. This information is summarized in table 6. The
importance of each of the variables is judged by comparing the deviance change against a χ2

distribution.

Variable Deviance Change d.f.
nyr 1.10 2
p inf 18.28 5
foliage 12.39 2
june 40.62 2
forec 12.61 2
apo r 51.08 2

Table 6: Deviance changes from fitting the variables singly.

From the results of this table, we might suspect that all but one of these variables are
important. The exception is the number of years since the last crop, which had a change of
deviance of only 1.10 with 2 d.f.

A full model with all six variables and the type3 analysis is then next,

proc genmod;
class nyr p_inf peas foliage june forec apo_r;
model need/at_risk = nyr p_inf peas

foliage june forec apo_r/
link = logit
error = binomial
maxit=100
type3;

run;

This program (can all.sas) gives us the output shown in figures 8 and 9.

6.2 Towards a full model

If we look at the last part of figure 9, we can see that some variables (such as nyr and p inf)
are significant, whereas as june is not. Surprisingly the variable associated with the number
of years since the last crop has become significant, and can now change the deviance by 8.67
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The SAS System                                1
14:46 Thursday, January 30, 2003

The GENMOD Procedure

Model Information

Data Set                      WORK.RISKSET
Distribution                      Binomial
Link Function                        Logit
Response Variable (Events)            need
Response Variable (Trials)         at_risk
Observations Used                      267
Number Of Events                        36
Number Of Trials                       267

Class Level Information

Class        Levels    Values

nyr               3    b c d       
p_inf             6    a b c e f z 
foliage           3    a b c       
june              3    a b c       
forec             3    a b c       
apo_r             3    b c d       

Criteria For Assessing Goodness Of Fit

Criterion                 DF           Value        Value/DF

Deviance                 251        119.8835          0.4776
Scaled Deviance          251        119.8835          0.4776
Pearson Chi−Square       251        181.1133          0.7216
Scaled Pearson X2        251        181.1133          0.7216
Log Likelihood                      −59.9417                

Algorithm converged.                                                       

Analysis Of Parameter Estimates

Standard       Wald 95%          Chi−
Parameter     DF  Estimate     Error   Confidence Limits   Square  Pr > ChiSq

Intercept      1  −11.3959    2.3681  −16.0373   −6.7546    23.16      <.0001
nyr        b   1   −1.6121    1.0106   −3.5928    0.3687     2.54      0.1107
nyr        c   1    0.9386    0.5850   −0.2080    2.0852     2.57      0.1086
nyr        d   0    0.0000    0.0000    0.0000    0.0000      .         .    
p_inf      a   1    4.7995    1.5795    1.7036    7.8953     9.23      0.0024
p_inf      b   1    1.5993    1.6136   −1.5633    4.7619     0.98      0.3216
p_inf      c   1    1.3262    1.3336   −1.2876    3.9401     0.99      0.3200
p_inf      e   1    2.8676    1.4156    0.0932    5.6421     4.10      0.0428
p_inf      f   1    2.1117    1.3649   −0.5635    4.7869     2.39      0.1218
p_inf      z   0    0.0000    0.0000    0.0000    0.0000      .         .    
foliage    a   1    3.5732    1.2442    1.1345    6.0118     8.25      0.0041
foliage    b   1    2.7464    1.0861    0.6176    4.8752     6.39      0.0115

Figure 8: Output from regression with all variables (page 1).
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The SAS System                                2
14:46 Thursday, January 30, 2003

The GENMOD Procedure

Analysis Of Parameter Estimates

Standard       Wald 95%          Chi−
Parameter     DF  Estimate     Error   Confidence Limits   Square  Pr > ChiSq

foliage    c   0    0.0000    0.0000    0.0000    0.0000      .         .    
june       a   1    0.5597    0.9305   −1.2641    2.3835     0.36      0.5475
june       b   1    1.0694    0.6876   −0.2784    2.4171     2.42      0.1199
june       c   0    0.0000    0.0000    0.0000    0.0000      .         .    
forec      a   1    3.3936    1.5444    0.3666    6.4206     4.83      0.0280
forec      b   1    3.0869    1.1898    0.7548    5.4189     6.73      0.0095
forec      c   0    0.0000    0.0000    0.0000    0.0000      .         .    
apo_r      b   1    3.2469    1.0524    1.1842    5.3097     9.52      0.0020
apo_r      c   1    4.2340    1.2394    1.8048    6.6632    11.67      0.0006
apo_r      d   0    0.0000    0.0000    0.0000    0.0000      .         .    
Scale          0    1.0000    0.0000    1.0000    1.0000                     

NOTE: The scale parameter was held fixed.

LR Statistics For Type 3 Analysis

Chi−
Source           DF     Square    Pr > ChiSq

nyr               2       8.67        0.0131
p_inf             5      15.93        0.0070
foliage           2      12.33        0.0021
june              2       2.43        0.2974
forec             2      12.06        0.0024
apo_r             2      18.92        <.0001

Figure 9: Output from regression with all variables (page 2).
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when it is entered last into the model. It is obviously confounded with some of the other
variables.

From the single variable analyses and the preceding discussion about the rain variable, the
variables p inf, foliage, forec, and apo r should be included in the model. One might try a
reduced model, removing the variable june, to see if the variables that are important retain
their significance even in the absence of the june variable.

This can be fit by the model included in the program can red.sas:

proc genmod;
class p_inf foliage forec apo_r nyr;
model need/at_risk = p_inf

foliage forec apo_r nyr/
link = logit
error = binomial
maxit=100
type3 type1;

run;

The output from this reduced model is presented in figure 10 and 11.
Examination of the output from the reduced model reveals that all variables are still sig-

nificant, and confirms the rationale behind the omission of the variable corresponding to the
rain in June.

An analysis of deviance table (table 7) can be constructed from the type 1 analysis table,
but since there is internal correlation among the variables, one must remember that the actual
changes in deviance reported are dependent on the order in which the variables are fit. Here
the residual deviance is the unexplained variation after fitting a model, and the change in
deviance is the difference between that model and the previous one. The latter is compared to
a χ2 distribution as a significance test.

Model Description Residual Deviance d.f. change P
A Intercept only 211.1804
B A + p inf 192.9053 5 18.28 0.0026
C B + foliage 182.4900 2 10.42 0.0055
D C + forec 168.9860 2 13.50 0.0012
E D + apo r 131.7485 2 37.24 <0.0001
F F + nyr 122.3088 2 9.44 0.0089

Table 7: Analysis of Deviance.

Fitting models is partly art and partly science. There are no hard and fast rules as to
how it should be done. Knowledge of the biology of a particular situation is likely to be the
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The SAS System                                1
10:28 Friday, January 31, 2003

The GENMOD Procedure

Model Information

Data Set                      WORK.RISKSET
Distribution                      Binomial
Link Function                        Logit
Response Variable (Events)            need
Response Variable (Trials)         at_risk
Observations Used                      267
Number Of Events                        36
Number Of Trials                       267

Class Level Information

Class        Levels    Values

p_inf             6    a b c e f z 
foliage           3    a b c       
forec             3    a b c       
apo_r             3    b c d       
nyr               3    b c d       

Criteria For Assessing Goodness Of Fit

Criterion                 DF           Value        Value/DF

Deviance                 253        122.3088          0.4834
Scaled Deviance          253        122.3088          0.4834
Pearson Chi−Square       253        171.4554          0.6777
Scaled Pearson X2        253        171.4554          0.6777
Log Likelihood                      −61.1544                

Algorithm converged.                                                       

Analysis Of Parameter Estimates

Standard       Wald 95%          Chi−
Parameter     DF  Estimate     Error   Confidence Limits   Square  Pr > ChiSq

Intercept      1  −10.9628    2.3444  −15.5578   −6.3678    21.87      <.0001
p_inf      a   1    4.8161    1.5934    1.6932    7.9390     9.14      0.0025
p_inf      b   1    1.6915    1.6294   −1.5021    4.8850     1.08      0.2992
p_inf      c   1    1.2803    1.3363   −1.3387    3.8993     0.92      0.3380
p_inf      e   1    2.9024    1.4178    0.1237    5.6812     4.19      0.0406
p_inf      f   1    2.1873    1.3678   −0.4936    4.8682     2.56      0.1098
p_inf      z   0    0.0000    0.0000    0.0000    0.0000      .         .    
foliage    a   1    3.8172    1.2369    1.3930    6.2415     9.52      0.0020
foliage    b   1    2.8168    1.0804    0.6993    4.9344     6.80      0.0091
foliage    c   0    0.0000    0.0000    0.0000    0.0000      .         .    
forec      a   1    3.3146    1.4912    0.3920    6.2372     4.94      0.0262
forec      b   1    2.9347    1.1738    0.6341    5.2353     6.25      0.0124
forec      c   0    0.0000    0.0000    0.0000    0.0000      .         .    

Figure 10: Output from regression with a reduced set of variables (page 1).
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The SAS System                                2
10:28 Friday, January 31, 2003

The GENMOD Procedure

Analysis Of Parameter Estimates

Standard       Wald 95%          Chi−
Parameter     DF  Estimate     Error   Confidence Limits   Square  Pr > ChiSq

apo_r      b   1    3.3805    0.7196    1.9701    4.7908    22.07      <.0001
apo_r      c   1    4.4094    0.9749    2.4985    6.3202    20.46      <.0001
apo_r      d   0    0.0000    0.0000    0.0000    0.0000      .         .    
nyr        b   1   −1.6212    1.0033   −3.5875    0.3452     2.61      0.1061
nyr        c   1    0.9839    0.5831   −0.1591    2.1268     2.85      0.0916
nyr        d   0    0.0000    0.0000    0.0000    0.0000      .         .    
Scale          0    1.0000    0.0000    1.0000    1.0000                     

NOTE: The scale parameter was held fixed.

LR Statistics For Type 1 Analysis

Chi−
Source         Deviance        DF     Square    Pr > ChiSq

Intercept      211.1804                                   
p_inf          192.9053         5      18.28        0.0026
foliage        182.4900         2      10.42        0.0055
forec          168.9860         2      13.50        0.0012
apo_r          131.7485         2      37.24        <.0001
nyr            122.3088         2       9.44        0.0089

LR Statistics For Type 3 Analysis

Chi−
Source           DF     Square    Pr > ChiSq

p_inf             5      15.86        0.0072
foliage           2      14.12        0.0009
forec             2      11.71        0.0029
apo_r             2      43.63        <.0001
nyr               2       9.44        0.0089

Figure 11: Output from regression with a reduced set of variables (page 2).
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single most important factor in the model-fitting process, since one wants a model that makes
biological sense. Even aspects such as significance level, however, are not fixed in stone.
While we readily use a significance level of 5% without too much questioning, one can argue
why it should be just 5 and not 4 or 6 percent instead. An alternative is to examine probability
levels instead of merely describing things as significant or not.
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7 Receiver Operating Characteristic Curves

Receiver operating curves can be used as a method to compare predictions for disease (21).
The curves can provide information regarding how often the predictions are correct (and in-
correct), and provide a graphic method of comparing different predictions systems.

Assume that a disease prediction algorithm can produce a range of values. This could re-
sult from varying weights or points being given to the various answers from certain questions,
such as number of years since the last susceptible crop was grown, or the quality of the seed
material. Assume that it is never a perfect predictor, and that any decision threshold based
on this algorithm (such as ’spray if the point accumulation is above a given level’) yields one
of four possible situations, for a given economic injury level (assumed to be 20 % in this
example).

Disease Exceeds 20% Disease less than 20%
Spray A B
Don’t Spray C D
Total A+C B+D

A/(A+C) True Positive B/(B+D) False Positive

Table 8: True and False Positive Rates.

The cells A and D in table 8 represent the number of correct decisions, whereas B and C
represent the incorrect decisions. If a total of A+C fields had a final disease level over 20%
(assuming this is the economic injury threshold (22)), and our algorithm predicted this would
occur in A fields, then the true positive rate (TP) would be A/(A+C). The true positive rate is
also called the sensitivity of the predictor. Likewise, if (B+D) fields had a final disease level
less than 20%, and our algorithm recommended a spray for B of these fields, then the false
positive rate (FP) would be B/(B+D). Another quantity used is the true negative rate (TN),
which is the proportion of negative cases correctly identified. In table 8 it would be D/(B+D).
This quantity is also referred to as the specificity of the predictor. Obviously, TN + FP = 1.0.

The TP and FP rates can be affected by changing the decision threshold. For example,
recommending a spray with a lower point accumulation would increase the TP rate, but may
also increase the FP rate. An ideal algorithm would maximize the TP rate and minimize the
FP rate.

The relationship between TP and FP for the risk prediction algorithms can be examined
graphically by plotting receiver operating characteristic (ROC) curves (13). These curves plot
the TP as a function of the FP at all possible decision thresholds. An ROC curve might appear
as in figure 12 (21). This curve can be generated with the SAS statements in the program
canola1.sas. This program contains a SAS macro that chooses different decision thresholds
and tabulates the different values for true and false positive rates, and generates the ROC curve
for the original risk algorithm. A program that generates the ROC curve for the recalibrated
risk algorithm (the one generated in the previous chapter using the program can red.sas) can
be generated by running the program reduced roc.sas.
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Figure 12: A ROC curve from an uncalibrated risk prediction algorithm.

In an ROC curve using our example, the origin of the graph represents the decision ’not-
to-spray’ for all fields. This decision yields no false positives (i.e. a recommendation to spray
in the absence of the need to spray: the quantity B in table 8 is 0) but captures no true positives
(recommending a spray for those fields that truly require one: the quantity A in table 8 is also
0). The upper right corner would recommend spraying all fields, thus detecting all fields that
truly require a spray (C = 0, TP rate = 1) but also recommending a spray for all fields that do
not require them (D=0, FP = 1). An efficient algorithm would yield a curve ’pushed to the
upper left corner’.

ROC curves can also be drawn plotting the TP as a function of the TN, or the sensitivity
as a function of the specificity (15). This is equivalent to flipping the graphs around a vertical
axis, and an efficient algorithm is thus pushed to the upper right corner instead.

The use of ROC curves is a method of comparing risk algorithms that does not rely on
the algorithms having the same scale. Figure 13 (21) compares two decision algorithms that
have different scales but are based on the same data set. This graph can be generated by
the SAS program dblroc.sas. It uses data sets created by the programs canola1.sas and re-
duced roc.sas, so make sure you have already run both of these programs.

An added advantage of using ROC curves is that it allows for flexibility on the part of the
decision maker. Variable decision thresholds, with varying TP and FP rates, can reflect the risk
attitudes (named utility functions in the economics literature) of the decision maker. Thus, a
risk averse decision maker may set his criteria level further to the right on Figure 13, and spray
his fields with a lower ’point accumulation’, when compared to a decision maker more willing
to take risks. He could thereby increase his true positive rate, but at the cost of increasing his
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Figure 13: Comparing the original and the recalibrated risk prediction algorithm. (From
reference 21, with kind permission of Springer Science and Business Media.)

false positive rate. The advantage of the ROC curves is that the rate of both kinds of errors
(applying an unneeded spray, and missing a needed spray, in our example) can be estimated.
Given these error rates and the relative costs of both kinds of error, the decision maker can
determine a critical value for his decision threshold, that reflects his attitudes toward risk.

The development of risk assessment algorithms needs to be guided by the requirements
the final algorithms. This is especially important if data are derived from surveys where one is
limited by the natural variation in the independent variables and their different combinations.
If data from a wide variety of cropping situations (variation in cultivars, cultural practices,
climate etc.) are used to develop algorithms, the result may have wider applicability if the data
set has captured the necessary variation. Likewise, restricting the variation in the underlying
data may not permit the discovery of important factors, merely because they are always present
(or absent), though this may not necessarily affect the validity of the resulting algorithm in
that particular setting.

An important factor to keep in mind is that a single ROC curve summarises the errors
involved for a single economic injury level. This level, of course, is in turn dependent on a
number of factors that we have little control over. In practice, it may be more useful to think
of a family of ROC curves for different economic injury levels, or an ROC surface plot with
the economic injury level as an additional variable (7).
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8 Bayes’s’ Theorem and Pest Prediction

The performance of the predictor can be then combined with general information about the
occurrence of the pest using Bayes’s’ theorem (20). In Bayesian terms, the general occurrence
of the pest can be considered an unconditional probability, representing how often we would
expect the pest to occur based on past experience, but without using any season-specific in-
formation. These are referred to as priors. Bayes’s’ theorem then allows us to combine the
information in the prior (our expectation based on past experience) with the information in
the predictor to form a new probability, conditional on this new information. This is referred
to as a conditional probability, since it is dependent on the information in the predictor.

In mathematical terms, Bayes’s’ theorem for the simple case with only two possibilities
is:

Pr(A|B) =
Pr(B|A) Pr(A)

Pr(B|A) Pr(A) + Pr(B|A) Pr(A)
(equation 4)

where Pr(A) and Pr(B) are unconditional probabilities of A and B and Pr(A) is the
probability of not observing A, i.e. Pr(A) + Pr(A) = 1.0. In this case, A represents pest
occurrence, and B represents a positive prediction. Note that the sensitivity (Pr(B|A)) and the
unconditional probability of pest occurrence occur in both the numerator and the denominator,
and that the false positive rate (Pr(B|A) also occurs in the denominator.

This can be made easier to handle by using odds of the outcomes and calculating the
likelihood ratios (LR) of the positive and negative predictions (20). The likelihood ratio of a
positive prediction, denoted LR(A, B), contains contains information about both specificity
and sensitivity:

LR(A, B) =
Pr(B|A)

1 − Pr(B|A)
(equation 5)

Likewise, one can also calculate the likelihood ratio of a negative prediction, denoted
LR(A, B):

LR(A, B) =
1 − Pr(B|A)

Pr(B|A)
(equation 6)

If we rewrite the prior probabilities as odds

odds(event) =
Pr(event)

1 − Pr(event)

we can write instead of equation 4:

odds(A|B) = odds(A) × LR(A, B) (equation 7)

and also derive a similar relationship for the probability of disease after a negative predic-
tion

The Plant Health Instructor, 2006 Decision Rules, page 38



odds(A|B) = odds(A) × LR(A, B) (equation 8)

For example, if a prediction algorithm has a sensitivity of 80% and a specificity of 75%,
then the LR for a positive prediction (calculated using equation 5) is

0.80

1 − 0.75
= 3.2

The LR for a negative prediction is

1 − 0.80

0.75
= 0.267

calculated using equation 6.
If the prior odds for needing a spray were 1 in 10 (i.e. the pest occurred only 1 year in 11

or 9%), then after a positive prediction the odds would be (calculated using equation 7)

(0.1)(3.2) = 0.32

or about a 24% chance that the pest would occur. After a negative prediction, the odds
would be

(0.1)(0.267) = 0.0267

calculated using equation 8.
How well does this work in practice? One would need information on both sensitivity

and specificity of the predictor, along with some general information on disease occurrence.
In one example (20), the specificity and sensitivity of a risk algorithm developed by logis-
tic regression (17) on the risk of Sclerotinia stem rot of oil-seed rape were combined with
information on prior probabilities (E. Twengström, personal communication).

This study utilized a twenty-year average for the need to apply fungicides to control Scle-
rotinia stem rot in order to obtain prior probabilities. Several different decision thresholds
were used corresponding to Figure 1 in the article originally published by Twengström et al.
(18). The 40 point threshold yields approximately equal rates for the two types of errors. A
lower decision threshold increases sensitivity at the cost of reduced specificity. A higher deci-
sion threshold sacrifices sensitivity for increased specificity. These decision thresholds were
combined with the priors based on the twenty-year averages and single highest year values for
Uppland and Västmanland. A range of posterior probabilities were obtained.

The authors concluded that for extremely rare or extremely common pests, it is impractical
to develop pest prediction systems that will receive widespread acceptance unless they have
extremely high sensitivity and specificity. For rare pests, the prior odds of pest occurrence
is low, and thus a test with an extremely high LR for a positive test is required in order for
the test to increase the odds to the point where action might be taken. In this case, it is the
specificity of the test that will increase the LR for a positive prediction. Even if the sensitivity
of the test was 100%, a specificity of only 95% will increase the odds only 20-fold.
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For common pests, a LR for a negative test will have to be very small in order to reduce
the odds of pest occurrence so that no action would be taken. This is achieved by having a
test with high sensitivity. If the specificity of a test is 100%, it will still require a sensitivity of
95% in order to reduce the odds of pest occurrence by a factor of 20.

Wider acceptance of predictive systems might be expected for pests that occur about half
the time. Even predictors with only modest performance might be used in this situation, since
there is no prior information on the occurrence of the pest. For more detailed descriptions
of the calculations and a more detailed discussion, the reader is referred to the original paper
(20).
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9 Notes on installing the SAS programs

The SAS programs shown in table 9 should be available in a compressed archive.

Chapter program data sets needed
1 dagis.sas -
2 simple.sas eyespot.dat

bugs.sas dishes.dat
3 strata1.sas -
5 can rd.sas risk.txt

can single.sas risk.txt
can all.sas risk.txt

can red.sas risk.txt
6 canola1.sas risk.txt

reduced roc.sas∗ risk.txt
dblroc.sas∗ risk.txt

Table 9: SAS programs included in the program archive. ∗Be sure to run both canola1.sas
and reduced roc.sas before running dblroc.sas

The SAS statements are written assuming that all program files and data sets are in the
directory E:\decision. If you choose to place your files in another directory, you will have
to make the necessary changes in the SAS programs. This information is in the statements
filename and libname at the beginning of the programs. In addition, Unix users may have to
change the line delimiter in some of the files in order to avoid errors.

Programs that generate graphs will use windows (or a similar system) to present the on-
screen graphs. If you want to generate postscript figures to incorporate into other documents,
you may want to change the graphic drive routine in sas as follows (found in change graph.sas):

filename grafout ’e:\decision\figure.ps’;
goptions device=ps gsfname = grafout

gsfmode=replace vsize= 12 cm
vorigin=12 cm hsize=15 cm;

An example of the use of this is the program test ps write.sas, which modifies the canola1.sas
program to generate a postscript file.

These programs were tested with SAS version 9.1 for Windows, and version 8.2 running
under Windows and Linux.
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