Bayesian analysis of Latent Infection with non-informative priors

All the basic information on the Bayesian model is here. It is always advisable the user to check this part before looking at the rest of the output.

The GENMOD Procedure

Bayesian Analysis

Model Information				
Data Set	WORK.ONFIT			
Burn-In Size	2000			
MC Sample Size	10000			
Thinning	1			
Sampling Algorithm	Gamerman			
Distribution	Binomial			
Link Function	Logit			
Response Variable (Events)	ONFIT			
Response Variable (Trials)	Ν			

Number of Observations Read	15
Number of Observations Used	15
Number of Events	141
Number of Trials	1500

Response Profile				
Ordered Value	Binary Outcome	Total Frequency		
1	Event	141		
2	Nonevent	1359		

Algorithm converged.

As a first step MLE (frequentist) methods are used to generate the parameter estimates. Then Bayesian methods will be implemented.

	Analysis Of Maximum Likelihood Parameter Estimate Parameter DF Estimate Standard Error Wald 95% Confidence Limits							
Pa								
Int	ercept	1	-2.2033	0.1547	-2.5065	-1.9001		
CD	D	1	0.1071	0.0628	-0.0160	0.2302		
RA	IN	1	-0.4264	0.1881	-0.7950	-0.0577		
wv	N	1	-0.0060	0.0628	-0.1292	0.1171		
Sc	ale	0	1.0000	0.0000	1.0000	1.0000		

scale parameter was held fixed.

The MCMC sampling starts with parameters based on (related to) the MLE (frequentist) fit to the data. To get exact same numerical results each time, put in a seed value.

Initial Values of the Chain							
CI	hain	Seed	Intercept	CDD	RAIN	ww	
	1	27500	-2.20328	0.107092	-0.42636	-0.00604	

Fit Statistics			
DIC (smaller is better)	293.078		
pD (effective number of parameters)	4.012		

Bayesian analysis of Latent Infection with non-informative priors

The GENMOD Procedure

Bayesian Analysis

Posterior Summaries								
	Percentiles	entiles						
Parameter	N	Mean	Standard Deviation	25%	50%	75%		
Intercept	10000	-2.2077	0.1555	-2.3142	-2.2062	-2.1004		
CDD	10000	0.1063	0.0636	0.0623	0.1065	0.1501		
RAIN	10000	-0.4343	0.1911	-0.5599	-0.4309	-0.3036		
ww	10000	-0.00453	0.0631	-0.0469	-0.00436	0.0376		

Mean is one central value of the posterior (analogous to a point estimate). Standard deviation is analogous to the standard error in frequentist analysis.

_	Posterior Intervals							
	Parameter	Alpha	Equal-Ta	il Interval	HPD I	nterval		
	Intercept	0.050	-2.5109	-1.9063	-2.4996	-1.8987		
	CDD	0.050	-0.0173	0.2277	-0.0172	0.2277		
	RAIN	0.050	-0.8237	-0.0664	-0.8168	-0.0617		
	ww	0.050	-0.1278	0.1204	-0.1305	0.1154		

Posterior Correlation Matrix						
Parameter	Intercept	CDD	RAIN	ww		
Intercept	1.000	0.261	-0.512	-0.240		
CDD	0.261	1.000	-0.583	-0.796		
RAIN	-0.512	-0.583	1.000	0.082		
ww	-0.240	-0.796	0.082	1.000		

Two ways of getting the 95% credible intervals: percentiles and HPD. (HPD may be more accurate).

Interpretation is easier when the parameters are not correlated (not required)

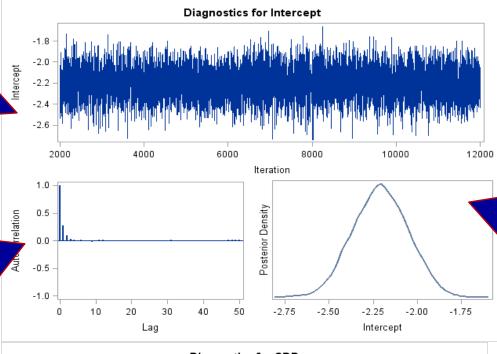
Bayesian analysis of Latent Infection with non-informative priors

The GENMOD Procedure

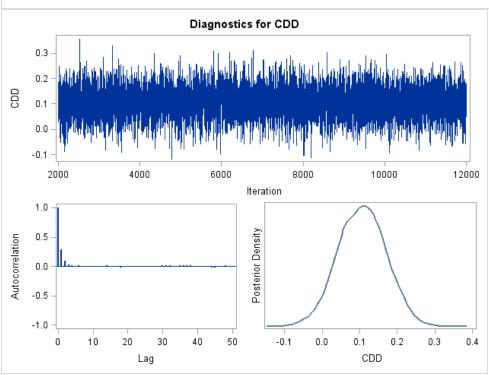
Bayesian Analysis

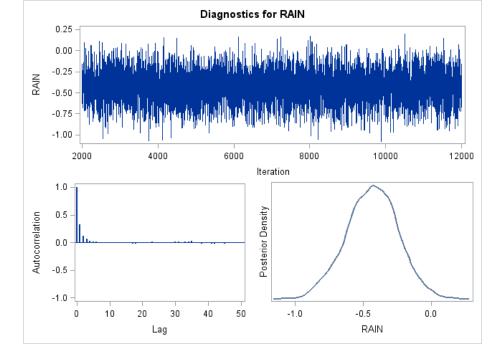
Some diagnostics: Autocorrelations at selected lags (nice to see ~ 0). Geweke statistics should ideally be not significant (Pr > 0.05).

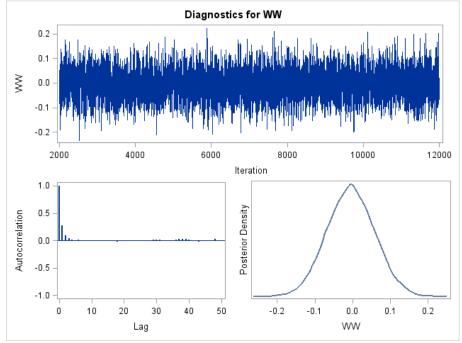
Posterior Autocorrelations							
Parameter	Lag 1	Lag 5	Lag 10	Lag 50			
Intercept	0.2759	-0.0108	0.0018	0.0179			
CDD	0.2816	-0.0001	-0.0076	0.0007			
RAIN	0.3259	0.0161	-0.0101	0.0046			
ww	0.2758	-0.0104	0.0052	-0.0093			


Gewek	Geweke Diagnostics						
Parameter	Parameter z Pr > z						
Intercept	-0.0519	0.9586					
CDD	-0.5222	0.6015					
RAIN	0.9912	0.3216					
ww	-0.4806	0.6308					

Effective Sample Sizes							
Parameter ESS Autocorrelation Time Efficiency							
Intercept	5557.0	1.7995	0.5557				
CDD	5478.8	1.8252	0.5479				
RAIN	4660.2	2.1458	0.4660				
ww	5523.2	1.8106	0.5523				


Effective sample sizes should be similar to the selected *N* for the posterior sampling (a much smaller number means that samples are too highly correlated).


A good trace plot of the N=10000 samples (stable, no trend, frequently crossing the mean line)


Ideally, the autocorrelation should drop rapidly towards 0 (indicating independence of the MCMC samples)

The estimated posterior density function, determined by a so-called kernel smoothing of the N MCMC samples

