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Foreword 
 

Over the years, modeling has become an integral part of plant disease epidemiology (or 

botanical epidemiology). As in other fields of research, modeling in plant disease 

epidemiology may serve very different purposes, including: 

- synthesizing available data on epidemiological processes; 

- predicting epidemiological patterns; 

- developing a conceptual framework that captures available data; 

- organizing epidemiological knowledge to identify knowledge gaps; or 

- designing experiments aimed at testing a theory. 

 

The number of modeling approaches used in plant disease epidemiology has been increasing 

at a very fast rate. It is not the purpose of this module to review all possible approaches. 

 

This module was developed to highlight, illustrate, and implement the linkages between 

models and data. Models are necessary to achieve one or several of the objectives listed above 

using the available data, and data are necessary to both develop and assess models. 

 

Yet, as plant disease epidemiology expands as a field of research, there seems to have been an 

increasing disconnect between 'field epidemiologists' who collect data and 'epidemiological 

modelers' who develop models. This gap needs to be filled, because data collection needs to 

be based on a good understanding of the modeling objective(s) and approach(es), and because 

model development requires a good understanding of field realities. 

1



 

The objective of this module is therefore to bridge the gap between 'observers' and 'modelers'. 

Among the wide array of possible approaches, we chose one which is particularly visual, 

involves as little calculus as possible − and thus enables one to concentrate on concepts, and 

allows the sharing of working examples. We therefore chose the mechanistic simulation 

approach as a vehicle to address the dynamics of plant disease epidemics and their impact on 

crop yield. 

 

Serge Savary 

Laetitia Willocquet 

 

June 2011, International Rice Research Institute, Philippines 

November 2012, Institut National de la Recherche Agronomique, France 
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Note for the reader 
 
This module is designed to empower biologists with a powerful analytical tool. Yet, we have 
endeavored to develop it with as little calculus and mathematics, and in fact with the hope that 
readers would discover, enjoy, and explore the field by themselves. 
 
Student 
Even if it is primarily intended to graduate students, this material is intended to undergraduate 
students too. Undergraduate students will gain some exposure to plant pathology, plant 
protection, systems analysis, and from a technical viewpoint, to simulation modeling applied 
to ecological systems. Introductory and transition sections are especially meant to be 
accessible to a very wide audience. Graduate students will be able to explore this material 
more in depth. 
 
Instructor 
This module can be used in class as well as for practical work. It provides the basic concepts, 
methods, and approaches in the field of systems analysis applied to botanical epidemiology. 
Simulation models are used to that aim, and applied to the dynamics of epidemics and yield 
losses. 
 
Other reader 
Most of this material is highly visual, and so readily accessible. Although the underpinning 
concepts can be rather sophisticated, the material assembled here is meant to invite thoughts, 
and if possible inspire. No prior specific knowledge in calculus, systems analysis, or even 
plant pathology is required, since these are introduced progressively, when necessary. 
 
Organization and content 
This module is organized as follows: 

- A general introduction to simulation models (Chapter 1) 
- A presentation of concepts and basic examples (Chapters 2 - 3) 
- Simulation modeling in plant disease epidemiology (Chapters 4 - 6) 
- Two transition chapters, providing a perspective of simulation modeling in plant 

disease epidemiology (Interlude) and an introduction to the next sections (introduction 
to yield loss modeling) 

- Simulation modeling of crop growth, yield losses, and their applications to rice and 
wheat (Chapters 7 - 9) 

- A discussion on the concepts associated with model evaluation (Chapter 10) 
- Two technical annexes (Instructions to run the simulation models; Simulation models 

to upload) 
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Chapter 1. Simulation Models: Why? Who? When? 

Simulation models have become important tools in Botanical Epidemiology. There are many 

reasons for this, but we emphasize three of the more important: (1) they enable exploration of 

hypotheses, and as such, have become invaluable means to guide research; (2) they are unique 

approaches to integrate (in the literal term of the word) epidemiological knowledge, in the form of 

experimental results; and (3) they enable connecting epidemiology with other fields of study ranging 

from agrophysiology to ecology, and from social sciences to natural resource management, for example. 

This module, and this introductory chapter, is intended to guide the potential user of simulation models. 

It is not, in any way, meant to be comprehensive on the very diverse simulation tools that already exist, 

but focuses on mechanistic, dynamic models. Similarly, it is not meant to provide any coverage of the 

breadth of applications; however, for interested readers, we provide references to use as a possible 

starting point. 

Why use simulation models? 

Simulation models are meant to answer questions which scientists have in a dynamic, 

quantitative, and often, a pictorial way. Much of the epidemiological research and its applications, in 

particular, involve a large number of components, actors, and factors. Assembling these in a coherent 

framework may seem a daunting task, especially for beginners, and can lead to confusion, even for 

experienced scientists, especially if the objectives of such an exercise are not well defined. This has 

often resulted in modeling activities becoming an end in themselves, instead of being one of the many 

tools plant disease epidemiologists may use to analyze and provide answers to crop health problems. 

Thus, simulation models have to address specific questions (Zadoks and Rabbinge, 1985), lest 

becoming self-centered and often unable to bring forward new insights. The insights can be of many 

kinds. They may be limited to the (very important) objective of better delineating the limits and 

components of the problem at hand, of identifying key factors that determine the behavior of 

pathosystems, of deriving disease management options and quantifying their potential efficacy, or of 

providing a framework for future research, such as, e.g., the quantification of the effects of components 

of resistance in partial resistance.  

Another worthwhile use of simulation modeling is that it still represents today the sole way to 

numerically integrate the available information often derived from experiments on processes 
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underpinning plant disease epidemics. This type of application has the important value of enabling a 

numerical visualization of knowledge gaps. 

Simulation models enable mobilizing available (primarily quantitative) knowledge of a system, 

and exploration of a system’s behavior. This property of simulation modeling is derived from the link 

between integration levels in biological systems (Rabbinge and De Wit, 1989), that is, the fact that 

simulation models are based on the principle that the behavior of a system at one level of integration 

(say, a field) is a reflection of processes operating at the next-lower level of biological integration (e.g., 

plants, diseased or healthy), that form the population that is present in the field. In other words, 

simulation enables upscaling, that is, the integration of processes occurring at a given level of hierarchy 

within a system (e.g., ‘a site on a leaf is infected’) to a higher scale of hierarchy of that system (e.g., ‘an 

epidemic takes place’). As a result, simulation modeling is unique as a scientific approach, because it 

enables one to explore possible futures. Of course, simulation modeling is a key approach currently used 

to study the effects of climate change on earth’s systems, including plant disease epidemics. There is 

however a large number of other applications of the extrapolation power of simulation modeling. This 

was already recognized by pioneers in the field, who actually conducted simulation-based experiments 

in botanical epidemiology a long time ago (Teng, 1985).  

Critical to the approach, however, is to specify the purpose of modeling prior to engaging into 

the modeling work. This implies that one has to choose among the many applications of modeling. 

Defining the purpose of modeling, in many ways, entails the underpinning question of model evaluation 

– will the anticipated model be evaluated? In which way? Do data exist that are appropriate for model

evaluation available? Model evaluation is a scientific field of its own (Teng, 1981), but is first a 

philosophical scientific issue: models, including simulation models, only consist of carefully chosen 

components of a system; and a system is a simplification of (modeled) reality.  

Thus, (simulation) models can only be proven wrong, to some degree. The notion of ‘validation’ 

applied to models (as well as to theories in general, Popper, 1963) might imply that a model is ‘true’, 

while the only truth is the reality, of which models are only simplifications. In many ways, therefore, 

scientists might be more interested in developing simple, parameter-sparse models, that can easily be 

evaluated, whether in terms of their inherent consistency (the model operates as the investigator intends 

it to), or in terms of their outcomes (the model’s outputs reasonably match the available observation). 

Teng (1981) provides an important discussion on the philosophical background of model evaluation.  

Another reason for investigators to favor parameter-sparse models emerges when models are 

intended for applied purposes: in such a case, one will often choose a model that requires little 
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information to operate, so as to be accessible to the largest number of users, in the broadest range of 

contexts. 

It follows from the above remarks that, as in experimental research, the simplest model enabling 

the investigator to (1) better understand  the behavior of a system, and (2) clearly answers  specified 

questions is often to be preferred to complicated structures. The latter are difficult to evaluate, complex 

in their inherent behavior, and often very difficult to use for practical plant protection purposes. 

Therefore, a simple, clear, and easily shared model reflects that the question addressed has been clearly 

expressed. 

Who are the users of simulation models? 

Development of simulation models does not require mathematical and programming expertise. 

But it does require (1) a good understanding of the system under consideration, (2) some basic 

knowledge of calculus, and, again, (3) a good articulation of the scientific question at hand.  

For botanical epidemiologists, critical steps thus are to (1) clearly specify the objectives of 

simulation modeling, (2) have a good outline of the system to address (this will be addressed in the next 

chapter) with numerical information of the next-lower level of integration (e.g., the monocyclic 

processes of epidemics), and (3) match the above two points with independent available data that pertain 

to the level of integration to be modeled (e.g., an epidemic), in order to enable the evaluation of the 

model that has been developed. 

When to use simulation models? 

The use of simulation becomes apparent as soon as a number of factors are considered to 

influence the behavior of a system. Many approaches, especially statistical ones, are available to analyze 

interactions in (biological) systems. Simulation modeling constitutes a unique approach in that it enables 

the simultaneous handling of a range of such factors and ‘see’ their influence on the behavior of a 

system, such as the course of an epidemic. In addition to the “Why” reasons listed above, one key 

outcome of simulation modeling is a better understanding of which components of a (plant-pathogen) 

system are truly important in its behavior, and which are presumably less so. 

In plant pathology, especially in botanical epidemiology, as well as in the analysis of the 

translation of epidemics into crop losses, one is always dealing with dynamic processes. Simulation 

modeling is a powerful approach to address such processes. Over the course of time, some components 

6



of a system will have an increasing, or decreasing, effect on the behavior of the considered system (e.g., 

the dynamics of an epidemic, or the build-up of yield - and thus of yield losses - over time). Anticipating 

such switches, especially when combined with factors that are considered important in the properties of 

the considered system (e.g., environmental or man-made factors) is extraordinarily difficult. Simulation 

modeling provides a unique way to visualize, understand, and quantify such dynamics. 

Lastly, simulation models can also represent good educational tools: they can provide an 

intuitive hands-on analysis of (plant-disease) systems.  

Summary 

• Simulation models have a number of applications. In particular, simulation models:

o allow exploration of the behavior of plant-pathogen systems;

o in doing so, they enable mobilizing experimental data;

o enable exploring the sensitivity of plant-pathogen systems to some of their (specified)

components;

o allow exploration of “futures”, i.e., analyze how the considered system might behave

under yet-undocumented conditions.

• Development of simulation models does not require mathematical and programming expertise.

But it does require (1) a good understanding of the considered system, (2) some basic knowledge

of calculus, and (3) a good articulation of the scientific question at hand.

• Simulation modeling is a powerful approach to address dynamic processes. Over time, some

components of a system may have stronger, or weaker, effects on the behavior of a system (e.g.,

the dynamics of an epidemic, or the build-up of yield - and thus of yield losses). Such questions

can powerfully be addressed through simulation modeling.

• Simulation models are good educational tools: they can provide an intuitive hands-on on

analyzing (plant-pathogen) systems.
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Chapter 2. Systems, Models, and Simulation 

A few definitions 

A system is a simplified representation of reality. "System" is a common word, often used with 

loose meaning. Whereas in the real world, a "system" may seem at times an endless series of connected 

elements, we refer here to a system as (1) a series of selected, chosen elements (this is a first 

simplification, and thus an implicit assumption), with (2) specified boundaries (a second simplification 

and implicit assumption), and (3) pre-determined time characteristics (with a third simplification and 

implicit assumption).  

These simplifications over space and time are important: they require pondering, and thus, 

expertise on the reality at hand. A 'simple' system could for instance be a nearby coffee shop. This 

coffee shop has customers who place orders and staff who process them. There may be at times very 

few customers, whereas at others, the place is very busy (say, because the coffee shop is just nearby the 

University, and has free wi-fi, which the students use while enjoying a coffee and chat with their 

friends). So, for the customers, and the staff too, time is not neutral. It is then useful to look at our 

coffee-shop-system over a series of sections of time (time steps) that make a day. Perhaps an appropriate 

time step of one hour is adequate: it is more than enough to encapsulate long hours when little really 

happens, but is just enough to capture events at peak time. So much, though, may happen in one hour 

over a cup of coffee, when the place is busy, people meet, many orders are placed, many messages 

received. Perhaps, a time step of 30 minutes, or even 15 minutes might then be better. So, although 

many near-empty 15-minute segments might be a waste of computing time, and lead to outputs that may 

be boring for some parts of the day, these might ensure that important events are not lost at peak time. 

Yet - so many things may still happen over a period of 15 minutes. Might a time step of 5 minutes be 

safer? This is obviously not an easy question.  

At any rate, a decision must be made, and it is up to the modeler to make it. Each system, such as 

the coffee-shop-system, has a time constant, which we can simply define for the time being as the delay 

over which the system may strongly change, or, in systems analysis phrasing: over which the state of 

the system may change. One way to empirically choose a time constant is based on experience and 

knowledge of the system at hand. Note that in the coffee-shop-system, not all the elements are enclosed 

within the coffee shop itself, which are important for the coffee-shop-system: for instance, it has free 

wi-fi. We therefore can call it a semi-open system. Biological systems, phytopathological systems in 
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particular, are semi-open: they receive and transmit information, components, biomass, or energy from 

and to their environment. 

A model is a computer program that describes the mechanics of the considered system. The 

encoding of a model can be made in many ways. Here, we use the STELLA® program, which enables 

us to focus only on components of a system, the system's structure, relationships among components, 

and the modeled system's behavior, rather than on the code of the program itself. Here, we refer to 

dynamic simulation models. At each time step, the status of the system changes: in the coffee-shop-

system, customers come and go, orders are placed, coffee is drunk, receipts are paid, messages are 

received, news is shared, sometimes coffee is spilled on computers. At each time step, the model 

updates the status of the system, and is set ready to account for the events of the following time step on 

the basis of the new status it just has acquired. 

A simulation, simply, is the execution of a model. This requires the further definition of the 

initial conditions of the system under consideration, and specified values of parameters. Again, this 

implies expertise on the system at hand. In the coffee-shop-system, one has to decide a few things. 

When in the day does the modeling start? How many customers and staff are already there at that time? 

How much money does the cashier have then? What are the prices of the different kinds of coffee? 

What are the rates of inflow and outflow of customers (and what determines it)? What is the rate of 

inflow of messages? The modeler, simply, has to set the scene, and decide a few rules. These may be 

made simple in the beginning. 

A preliminary warning remark 

The beginning of the previous paragraph started with three elements of simplification regarding 

the components of a system, the boundary within which a system operates, and the time characteristics 

of the system under consideration. As in other branches of science, these simplifications are made in 

order to make the problem tractable. Before we proceed, it is very important to stress that, while science 

progresses through assumptions (and thus simplifications) that are tested and refuted, such 

simplifications in modeling do correspond to assumptions. One real danger of modeling without 

revisiting such assumptions is to make the process of model development, verification, and evaluation 

an exercise which becomes disconnected from the reality at hand. These simplifications-assumptions are 

derived from the modeler expertise of a reality, and of hypotheses about components that govern the 
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system's behavior. Not revisiting (and testing) these hypotheses may lead to reductionism, not to the 

originally intended 'systems approach'. 

Analytical and numerical integration: example of the exponential growth 

Some basics of calculus are needed for modeling. But this is very little indeed.  A classical 

example is that of exponential growth. If one considers a system in which an organism (say, a 

bacterium) is provided with unlimited nutrient and conditions that are suitable for its maintenance, 

growth, and multiplication, then exponential growth is expected to occur. Such a system is of course a 

very strong simplification of reality, and we shall come back to addressing such simplification in the 

following chapter. 

Nevertheless, let us assume that this system is worthwhile considering for now, and let us denote 

by x the number of bacteria, and by t, the elapsing time. What follows are two approaches to modeling 

the system. We shall start with an analytical integration. We then will address the same question with 

what is called a numerical integration. This section will end with a brief discussion on the differences 

between these two approaches. 

The analytical integration of the problem could be written as follows.  Let us consider a very 

simple process, whereby a given quantity, x, increases over time, t, with a given rate, r. Let us further 

assume that x may vary between an initial value, x0, and a final value xf. Conversely, time may vary 

between a starting time, t0, and a final time tf, so that one can write: 

[ ]fxxx ,0∈

and 

[ ]fttt ,0∈
. 

Therefore, one can write that the variation in x relative to any variation (more precisely, to any 

infinitely small variation) of time, dt, is proportional to r and to the value of the currently existing 

quantity x: 

xrdtdx ∗=/

One can note that the quantity dx/dt is a ratio between the considered quantity and time. If, for 

example, x were a distance, dx/dt would represent the physical speed of an object. In general, these 

equations refer to some speed of a sort; we shall come back to that point later-on. 
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This differential equation can be easily handled by 'moving' the dt term to the right hand-side of 

the equation, and the x term to the left hand-side of the equation, so: 

dtrxdx ∗=/  

Now that we have all the xs on the left hand-side, and the time term, dt, on the right hand-side of 

the equation, we can use Riemann integrals in order to solve this differential equation, and write: 

  ∗=
τ τ

0 0

/
t t

dtrxdx

where t0 and τ denote the initial and final times over which the process is integrated, respectively. 

We may assume at this stage that r, the rate of increase of the quantity under consideration, is 

constant over the time interval we have chosen [t0, τ]. With this assumption, r can be extracted from the 

integral sign of the right hand-side of the equation: 

 =
τ τ

0 0

/
t t

dtrxdx

The integration of both sides of the equation can then be done, as: 

][)][ln(
00
tx tt

r
ττ

∗=

where the t0 and τ signs on both sides of the brackets indicate, as before, the initial and final times when 

the integration is made. This translates into: 

)()ln()ln( 00
trxx t −∗=− ττ

which amounts to: 

)()/ln( 00
trxx t −∗= ττ

If we simplify the way to write variables as: 

xτ = xt ; xt0 = x0 ;  

as well as considering that the running time, τ, can be written as t: τ = t; and if we assume that the initial 

time is null: t0 = 0,  we can make further simplifications to the equation: 

ln (xt/ x0) = r * t 

The reverse function of the natural logarithm is an exponential, so that we can write: 

xt/ x0 = exp (r * t) 

And so, we can write: 

xt = x0 * exp (r * t) 
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This is the typical exponential growth function, which states that the population of bacteria, x, 

increases exponentially, with an initial value of x0 (when t = 0, er*t = e0 = 1), and this growth is infinite. 

The numerical integration of the same problem can now be addressed as follows.  Let us say that: 

- the amount of bacteria is to be denoted by A, the number of bacteria in the system at a given 

point of time; 

- the rate of increase of the bacterial population is denoted RA; and 

- the relative rate of increase of the bacterial population, that is, the rate of increase of the bacterial 

population relative to the amount of bacteria present in the system is denoted RRA. 

One notes that, in comparison with the analytical integration, we now have: 

A = x;  

RA = dx/dt, and  

RRA = (dx/dt)/x. 

The numerical integration of this problem only involves two lines of code: 

A (t + Δt) = A (t) + RA * Δt 

RA = RRA * A 

The first equation states that at each time step, Δt, the amount A of bacteria at time t, A(t), is 

incremented by the quantity RA * Δt, and the second, that RA is in turn the product: RRA * A. 

These equations can also be summarized by a diagram: 

Figure 2.1. A flowchart for exponential growth. The amount of bacteria is denoted A, the rate of 

bacterial increase is denoted RA at each time step Δt, with a relative (or intrinsic) rate RRA (See 

also Table 2.2). 

One may want to consider if, and to what extent, the principle of the two methods, analytical and 

numerical integration, differ. Let us come back to the differential equation with which we started: 
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xrdtdx ∗=/

If, in this equation, one replaces the infinitely small differences, denoted d• in bacterium 

numbers (dx) or in elapsed time (dt), by small variation in bacterium number, Δx, in response to small 

variation in time, that is, by time step Δt, one would derive: 

xrtx ∗=ΔΔ /  

Let us make Δt approaching infinitely small values, that is, let us consider the limit of the ratio 

Δx / Δt with Δt becoming infinitely small. One may write:  

lim Δt0 (Δx / Δt) = dx / dt

where dx / dt is the definition of the derivative of x over t.  In other words, writing: 

xrtx ∗=ΔΔ /  

is formally incorrect, but one may say that the ratio Δx/ Δt is an approximation of xr ∗ , if Δt is small 

enough. One should thus write: 

xrtx ∗≈ΔΔ /

The two approaches therefore are not identical. The formal analytical integration yields the 

correct result, whereas the numerical integration only provides a numerical estimate. Science of course 

prefers exact results. Some systems, however, are sufficiently complicated to prevent the derivation of 

an analytical solution. Should such systems be disregarded for this reason? Numerical integration 

provides a means to produce approximate solutions. For instance, in the above example, the analytical 

solution was derived while assuming r constant. This of course very seldom happens, even in highly 

simplified systems. Numerical integration provides a simple way to address variation over time of 

parameters such as, in this example, r. Furthermore, sources of variation other than time can be 

addressed as well. This will be addressed in the next chapter.  

Numerical integration also provides other, quite important, advantages including: (1) means to 

easily explore the behavior of a system, and (2) means to easily develop, convey, and share model 

structures and their implications, as we shall try to show. 

As pointed out in the first section of this chapter, one must bear in mind elements pertaining to 

(1) the implicit assumptions-simplifications that form the basis of a model structure, (2) the need for 

expertise when time steps, systems limits, and systems components are chosen, and (3) the necessity to 

suitably assess simulation model outputs. Such precautions are needed irrespective of the modeling 

approach chosen. 
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Forrester's symbols and syntax 

Table 2.1 provides a summary of the symbols Jay Forrester (1961) created, which were used 

previously in Fig. 2.1 and which will be used throughout the module.  

Table 2.1. List of symbols for simulation modeling. After Forrester (1961). 

The first symbol is a rectangle, representing a state variable. State variables characterize a 

system's status, and are continuously varying in the system. In the above example, the state variable is 

A, or the number of bacteria. Surprisingly enough, the choice of state variables is critical, and also 

reflects the interests of the modeler. In the virtual coffee-shop system of the former section, several 

choices could be made. For instance, a specialist in population dynamics (or professors concerned by 

attendance in class) would probably choose state variables which express numbers of customers (i.e., 

which have 'numbers' as dimension, as discussed below); an economist would perhaps choose state 

variables expressing money exchanged; an information theory specialist might choose state variables 

representing information in its various forms; or a supply-chain expert might consider stocks of coffee 

in their various stages of consumption. Such choices have implications on the very use of the model, of 

course, but also may lead to pondering the limits of the system to consider (what is the limit of 

information? where does the coffee actually come from?), the flows and connections the system 

involves, as well as its time-constant. While such choices are in the hands of the modeler, a rule of 

thumb exists: a 'good' mechanistic model is one which has state variables that have correctly been 

chosen, because the state of the system is described by several state variables (accounting for a series of 

relevant transitions in one key component of the system, say, the numbers of incoming, waiting, sitting, 

paying, and leaving customers), and comparatively few parameters. 
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This last point brings us to what we feel is a critical remark, although many might perceive it as 

obvious: modeling must have a purpose. One is often tempted to model 'everything', that is, mix up 

levels of integrations (e.g., the life cycle of an individual lesion, the dynamics of disease on a plant, the 

dynamics of disease in a canopy or a landscape, as well as the crop losses caused by disease). This is a 

very dangerous path to take: systems analysis tells us that the behavior of a system at one level of 

integration depends on processes occurring at the immediately lower level of integration. Limits must be 

chosen, and objectives set. The choices of the state variables, of the limits of the system, for instance, 

are important steps to not drifting towards unmanageable complication. Setting such limits also allows 

focusing on the applications a model may have. 

The second symbol is a valve which controls a flow incoming or leaving a state variable; this 

symbol is always connected to the very flow the valve controls, the third symbol of Table 2.1. There can 

be only one valve, that is, one control, per flow. Flows are represented in solid arrows (Fig. 2.1) or 

double lines (Table 2.1). They represent the increase, or decrease, of contents of the state variable the 

flow reaches or leaves. In Fig. 2.1, rate RA controls the inflow of bacteria into the state variable A, the 

total number of bacteria in the system. 

Systems nearly always involve flows other than those pertaining only to the increase or decrease 

in contents of state variables. These flows of information are shown in dashed lines (Fig. 2.1) or in 

simple thin lines (Table 2.1). A flow of information always originates from a coefficient, a (possibly 

variable) parameter, a driving function, or from a state variable, as in Fig. 2.1. 

Coefficients or parameters are shown as circles, as in Fig. 2.1, where RRA represents the 

relative rate of bacteria increase. 

The last symbol introduced by Forrester (Table 2.1) is that for a driving function: a segment and 

a dot at its middle. This brings us back to the beginning of this chapter, when dealing with semi-open 

systems. Driving functions are meant to represent factors that are not included within the set boundaries 

of the considered system, but nevertheless, influence it from the outside. Examples for driving functions 

are many: the Earth system does not include the Sun, yet everything that happens on Earth depends on 

the radiations intercepted by Earth from the Sun, which therefore may be represented by a driving 

function; or, the purchasing behavior of customers in the coffee-shop-system may depend on the price 

of the coffee - or on whether examination dates are approaching. Similarly, in Botanical Epidemiology, 

the behavior of a pathosystem may strongly depend on temperature or rainfall. Driving functions 
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represent variables that are outside the limits of the considered system, and yet may strongly influence 

it. They also are likely to vary strongly, and the choice of a suitable time step has to take into account 

these variations. Some programs, such as the STELLA® program, represent driving variables with the 

same symbol as (variable) parameters, i.e., circles. However, it is important to bear in mind the clear 

difference between a parameter (within a system) and a driving function (outside its boundaries). 

Dimensions 

Dimensions can be represented between brackets. For instance, [L], [T], and [K] stand for length, 

time, and temperature dimensions, respectively. The speed of an object, for example, would have 

dimension: [L.T-1], that is, distance per unit of time:  

speed = distance / time 

with dimensions: [L.T-1] ≡ [L] / [T] ≡ [L].[T-1]. 

Note that the symbol between L and T-1 does not represent a multiplication sign in the algebraic 

sense. 

An equation such as: RA = RRA * A in the above example entails dimensions. 

- A, the size of the bacterial population has for dimension: [bacteria], or: [N]; 

- RA, the rate of growth of the bacterial population has for dimension: [bacteria.time-1], or in a 

simplified manner: [N.T-1]; and 

- RRA, the rate of growth of the bacterial population relative to the bacterial population size has 

for dimension: [bacteria.bacteria-1.time-1], or: [N.N-1.T-1] 

The dimensionality of the equation:  

RA = RRA * A therefore is: [N.T-1] ≡ [N.N-1.T-1]*[N]. 

Since the number dimensions, [N] and [N-1], cancel one another in the right hand side of the 

dimensionality equation, one thus can see that both sides of the equation for RA have the same 

dimensions. 

Checking the dimensionalities of an equation is one good way to check if the equation itself is 

correct. Do note, however, that the reverse is incorrect: identical dimensionalities of both sides of an 

equation are no proof of its correctness (and of course not of its scientific validity). Nevertheless, it is a 

very convenient way to check for gross mistakes. 

Unlike analytical integration, numerical integration therefore deals with dimensions. In 

particular, the dimension of the state variables that are involved in a model is one key additional 

17



decision a modeler must make. In that sense, numerical integration brings us close to the realm of 

physical sciences, although of course mathematical correctness is required. Choosing, checking, and 

pondering the dimensions of each of the elements of a model does not cause additional trouble. On the 

contrary, it provides a critical instrument to control whether the modeling structure is consistent. This is 

particularly useful when a model involves a number of state variables, rates, parameters, and driving 

functions. Note that dimensions are related to units. However, a given dimension may correspond to 

different units, and the latter should of course be consistent across the structure of a model as well. 

Table 2.2 provides a list of dimensions for state variables, rates, and coefficients. Note, as 

indicated above, that all the rate variables are actually speeds of some sort, and thus have dimensions: [ 

_.T-1]. 

Table 2.2. Dimensions for a set of examples of variables 

Variable 

type 

Variables Dimensions Units

(examples) 

State 

variables 

Length [L] m

Mass [M] kg

Number (population size) [N] number 

Leaf area [L2] m2 

Leaf area index [L2.L-2] ≡ [1] m2·m-2 

Root length [L] m 

Population deny [N.L-2] number·m-2 

Rates Speed [L.T-1] m·s-1 

Growth [M.T-1] kg·d-1 

Population increase [N.T-1] number·d-1 

Coefficients Acceleration [L.T-1.T-1] ≡ [L.T-2] m·s-2 

(Bio)mass relative growth 

rate 

[M.M-1.T-1] ≡ [T-1] d-1 

Relative population growth 

rate 

[N.N-1.T-1] ≡ [T-1] d-1 
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Time constant and integration step 

Let us return to the notion of time constant. As the model runs, a program is executed. Its 

execution is based on a chosen time step, Δt. At each time step during the running time of the program, 

each state variable at t + Δt equals the value of the state variable at time t, plus the rate at time t 

multiplied by Δt. This procedure of numerical integration yields the new values of the state variables. 

The time step of the model, Δt, has to be chosen small enough so that the rates do not change 

notably within Δt. To avoid instability, the time step has to be much smaller than the time constant of 

the considered system. The time constant of a very simple system such as the bacterial population model 

considered in this chapter is 1/RRA (note that: 1 / RRA ≡ [T]). 

Depending on authors, the time step used should be 1/3rd to 1/5th of the system's time constant. 

Most systems, however, involve several processes, and therefore, several rates. One may consider that 

the time constant of such a system is equal to the reverse of the fastest relative rate of change of one of 

its state variables. The smaller the time constant of a system, the smaller the time step will have to be. 

Summary 

This chapter introduces the concepts of system, model, and simulation. It also 

• introduces the notion of numerical integration, and compares it with analytical integration;

• thus, the notion of time step, its choice, and the concept of time constant are introduced;

• by means of a simple exponential process, the syntax of Forrester to represent systems is

introduced;

• and the notion of dimensionality of variables and parameters in a model is explained.
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Exercises and questions 

1. A reasonable time step to simulate the dynamics of the number of books in a library is

a. one second

b. one day

c. one month

d. one year

2. What are reasonable time steps in the coffee shop if one chooses:

a. the number of customers as state variable;

b. the number of coffee cups served as a state variable;

c. the number of incoming and outgoing e-mails as a state variable;

d. the number of employees present at any time in the coffee shop;

e. the amount of money in the cashiers desk at any time.

3. In the modeling of growth of a bacterial population, the rate of growth of the bacterial population, the

relative rate of growth of the population, and the number of bacteria are, respectively: 

a. a state variable, a rate, and a relative rate;

b. a rate, a relative rate, and a state variable;

c. a relative rate, a rate, and a state variable.

4. A state variable is

a. A rate of change of variable

b. A constant parameter
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c. A variable which varies at each time step, depending on inflows and outflows

d. A driving function

5. Numerical integration

a. can be done when parameters vary over time

b. is identical to analytical integration

c. requires mathematical integration

d. does not depend on the integration time step

6. The dimension of speed is

a. [L]

b. [L2]

c. [L.T]

d. [L.T-1]

7. The dimension of the density of bacteria in a suspension is

a. [T-1]

b. [N.L-3]

c. [N.L-2]

d. [L.T-1]

Answers to exercises and questions 

1. b: one day

2. Reasonable time steps are in the range of:

a. for the number of customers: 1 hour;

b. for the number of coffee cups served: 5 minutes;

c. for the number of incoming and outgoing e-mails: 1 minute;

d. for the number of employees present at any time in the coffee shop: 1 hour;

e. for the amount of money in the cashiers desk at any time: 1 hour or 1 day.
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3. b: a rate, a relative rate, and a state variable.

4. c: A variable which varies at each time step, depending on inflows and outflows

5. a: can be done when parameters vary over time

6. d: [L.T-1]

7. b: [N.L-3]
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Chapter 3. Preliminary Examples of Simulation Models 

This chapter introduces some of the main elements required to develop models and 

explore their behavior. The development of a model amounts to the articulation of hypotheses 

pertaining to a system under study. One (but not the only one) of the main interests in developing 

models is to 'see' how the system would behave, assuming that the representation we make of that 

system is correct. 

Here, we use the STELLA® program, because it (almost) directly uses Forrester's 

symbols, and because we do not have to bother about the syntax of the program. We do have, 

however, to be consistent with respect to the syntax of Forrester's symbols, which one can 

consider as pictograms, each of them corresponding to individual computing steps (see previous 

section). As will be shown in the following text, the choice of this programming platform sets us 

free from computing details, and instead allows focusing at the system at hand, its time and space 

characteristics, the way we would like to represent it, and then on the set of equations we believe 

govern its functioning. 

Essentially, STELLA® operates in five stages: 

1- draw the elements and relationships that represent the structure of the model (this 

implies choices described in the previous chapter, including the state variables themselves, their 

dimensions, and the limits of the system); 

2- decide on a time frame, a time step, and an integration procedure; 

3- devise equations that relate the state variables, the rates, and the parameters of the 

model among themselves; 

4- run the model, and see the outputs as graphs or tables; and 

5- check the program corresponding to the model which has been developed. 

These different stages are linked in different windows of the same STELLA® file. 

Exponential growth 

In the previous chapter, exponential growth was used as an example for integration, both 

analytical and numerical. Here, we shall first model exponential growth with the same hypotheses 

as in the previous chapter: (1) there are no limits to growth (i.e., unlimited supply of nutrients, no 

self-toxicity), and (2) the rate of growth is constant over time. 
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One first has to use a state variable, the amount of bacteria, A. A state variable is 

represented by a box. The next component of the system is a flow of bacterial growth governed 

by a rate of growth, RA (the number of new bacteria formed per time step). This is represented 

under STELLA® by a double arrow and a valve. The third element of the system is the relative 

rate of growth (the number of new bacteria formed per bacterium per time step), RRA. RRA is a 

parameter (in this example a fixed-value parameter) represented by a circle. 

The system also involves relationships among some of its components, that is, flows of 

information. These relationships concern the effect of RRA on RA (i.e., we state that: 'RA 

depends on RRA'), and the effect of A on RA (we state that: 'RA also depends on A'). These 

relationships are represented by simple arrows. 

Figure 3.1. A flowchart representing exponential growth. 

The flowchart is shown in Fig. 3.1. This very simple drawing therefore says that the 

amount of bacteria, A, grows with a rate RA, which depends on both the current number of 

bacteria A and a relative (or 'intrinsic') rate of increase, RRA. 

The model corresponding to this diagram then needs documentation. Let us for instance 

assume that the initial number of bacteria is 1 (i.e., A0 = 1), and that the relative rate of bacterial 

increase is 0.3, that is, that each bacterium produces 0.3 new bacterium per time step, Δt. 

The time characteristics of the system need then to be specified. We may, for instance 

assume that one is dealing with a 24-h experiment, and that the bacterium population is 

monitored on an hourly basis. One would, then run the simulation with a time step of Δt = 1 h 

over a period of time of 24 h. 

A

RA

RRA
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Figure 3.2. Simulated exponential growth. Horizontal axis: time (hours); vertical axis: 

number of bacteria. 

The result is shown in Fig. 3.2, where t is the abscissa and A is the ordinate, with the 

expected exponential number of bacteria increasing over time. 

As a last step, we need to take a look at the program, written for STELLA®, as follows: 

A(t) = A(t - dt) + (RA) * dt 

INIT A = 1 

INFLOWS: 

RA = A*RRA 

RRA = 0.3 

Varying the parameter of exponential growth 

The previous paragraph reassures us that we indeed can easily develop a simulation 

model, even though it admittedly is a very simple one. One question which quickly may arise is 

whether and to what extent our model is sensitive to its parameter, RRA.  To address this 

question, one can arbitrarily assign to RRA a series of different values, such as: 0.01, 0.05, 0.1, 

0.2, and 0.3. 

The resulting graph is shown in Figure 3.3. As expected, any incremental increase in the 

relative rate of increase parameter corresponds to curves that strongly differ not in shapes, but in 

slopes (speeds) and maxima. This result shows how sensitive the model is to variations of RRA. 
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This does not come as a surprise, of course, but further ensures us that the model does behave as 

exponential processes do. 

Such a simple exercise (analyzing the effects of parameter change on the model output) 

actually is a sensitivity analysis, used in this case to check whether the program behaves as 

intended. Sensitivity analysis is a field of its own, with many applications, which we cannot 

address here. 

Figure 3.3. Simulated exponential growth with different values of the relative rate of 

increase, RRA. Curves 1 to 5 correspond to RRA values of 0.01, 0.05, 0.1, 0.2, and 0.3, 

respectively. Horizontal axis: time (hours); vertical axis: number of bacteria. 

Introducing a driving variable: exponential growth with varying relative rate 

Until now, we have assumed that the relative rate of increase, RRA, of the exponential 

process is constant. In many cases, environmental conditions are such that processes involved in a 

system are influenced. Botanical epidemiology, for instance, provides a wide range of such 

external influence on the behavior of epidemics. 

Still using our exercise exponential model, it is possible to explore ways to see how such 

external influences may be modeled. Let us for instance assume that RRA varies with 

temperature, such that, from experimental results, we have the following Table 3.1. 
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Table 3.1. RRA values according to temperature 

This table indicates that at a temperature of 0°C, RRA is 0, then increases linearly, and 

then tapers off when temperature approaches 50°C. Instead of a table, this information could be 

represented by a graph of RRA as a function of temperature. Between each (temperature, RRA) 

pair of data points, a segment would be drawn, which amounts to a linear interpolation. Many 

programming languages enable the computation of values that RRA would take according to 

temperature from such linear interpolations. 

Furthermore, let us assume that the experiment was conducted under conditions such that 

the temperature would have been oscillating around a mean temperature of 20°C with an 

amplitude of 10°C, which amounts to: 

Temp = TempMean + AmpTemp*sin(2*π*time/24) 

where Temp is the running temperature, TempMean is the mean temperature, and AmpTemp is 

the amplitude about which the running temperature varies. 

These new elements can be incorporated in the model by adding new components: 

- a Temp variable which influences RRA, and 

- two driving functions, TempMean and AmpTemp, which, in turn, makes Temp vary. 

The model diagram is represented in Fig. 3.4. 
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Figure 3.4. A flow chart representing exponential growth with temperature variation as a 

driving variable. 

TempMean and AmpTemp are called driving functions (or driving variables), because 

they influence the system under consideration externally. If we were strictly using Forrester's 

symbols, they should be represented by segments with a dot at their center (see previous chapter) 

in order to indicate that they are different in nature from RRA, which is a parameter inherent to 

the model under consideration. 

The question is whether large variations in RRA, as indicated by the effects of 

temperature on RRA in the previous table, could strongly influence the behavior of the system. 

Fig. 3.3 showed how strong the effect of RRA on the model's output can be, and thus one expects 

a strong response. Under the above assumptions on RRA's response to temperature, and 

temperature variation over time, one thus expects a strong change in the system's behavior. 
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Figure 3.5. Simulation of bacterial numbers (A), temperature (Temp) and relative rate of 

bacterial increase (RRA). Horizontal axis: time (hours); vertical axis: number of bacteria 

(A), relative rate of increase of bacterial population (RRA), and temperature (Temp). 

Contrary to our initial intuitive reasoning, Fig. 3.5 indicates that the shape of the bacterial 

population curve is barely influenced by changing temperatures: it still remains an exponential 

process. Yet, the variations over time of temperature, and of RRA over temperature, are showing 

the expected sinusoid shapes. 

Of course, the values of Table 3.1 were chosen on purpose for this example. We could 

also have made the amplitude in temperature variation much broader but this would not alter the 

outcome: what was first designed as an exponential process remains. 

The limits to growth - a summarized phytopathological perspective 

In a famous report entitled 'The Limits to Growth' to the Club of Rome, Meadows et al. 

forwarded a grave warning in 1972 to the international community: unlimited growth (as most 

conventional economists and demographists see it) cannot possibly take place, disregarding the 

global population growth and the limited resources of the biosphere. This was followed by a 

series of sequels, including 'Beyond the Limits - Global Collapse or a Sustainable Future' in 1992 

(which actually makes extensive use of systems concepts, simulation modeling, and of the 

STELLA® program), and 'World on the Edge - How to Prevent Environmental and Economic 

Collapse' in 2011. These warnings have repeatedly been dismissed as simplistic, biased, and 
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Malthusian, because they did not factor in the human ingenuity to solve problems as they emerge. 

G. Hardin (1968) however made a very strong case in his article on the 'Tragedy of the Commons' 

in highlighting this particular and (usually extremely important) class of problems which can be 

called "no technical solution problems". 

From a modeler's standpoint, the above example illustrates one of the many uses of 

simulation modeling. Simulation models enable researchers to conduct (simulation) experiments 

on systems in which no material experiments could possibly be conducted. There is only one 

biosphere, and experiments where the rate of, for example, population growth, the amount of 

available water, the fraction of human beings living in cities, and the amount of food produced 

per capita would all be varied, are simply unthinkable. Carefully designed models, hypotheses 

(that is to say, building scenarios), and simulations, as well as cautious interpretations of 

simulation results, allow us to precisely do that. 

Plant disease epidemiologists are confronted with limited growth on a routine basis: a 

crop has only a limited number of sites (e.g., individual plants, leaves, or fragments of roots, say, 

per square meter) which may become infected. Once infected, such sites cannot be infected again, 

and the pathogen is confronted with a limited carrying capacity at each point of time. Epidemics 

do occur in natural ecosystems too, which are characterized by one among many differences: 

whereas a crop is to be seen as a cohort of individuals of approximately the same physiological 

age, and very often, with a similar genetic make-up, host plants in natural ecosystems do not have 

the same physiological age, and differ genetically. Nevertheless, in both kinds of systems, a limit 

to (disease) growth exists. 

Figure 3.6. Flowchart representing exponential growth with limited growth. 
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For now, let us return to our simple bacterial model. One important change in the model 

structure is to consider that bacteria are not growing in an unlimited volume, with unlimited 

supply of nutrient. We then would introduce the notion of carrying capacity in the model, in this 

case, represented by the maximum number of bacteria the system might  

possibly contain. The starting value of the bacterial population was set at 1 (this "1" might 

represent 1×106 bacteria). Let us now assume that the maximum number of bacteria in the system 

could only be 100 (or 100×106 bacteria). The model structure then becomes as shown in Fig. 3.6. 

Introducing Amax slightly changes the program, as the equation for RA now has to 

account for Amax, namely, RA is not only function of RRA but is also a (multiplying) function 

of the distance to which the current bacterial population is far away from reaching its maximum 

possible value, which we write: (1 - (A/Amax)). This term will be referred to the 'correction 

factor' in the following chapter. The corresponding modeling program becomes: 

A(t) = A(t - dt) + (RA) * dt 

INIT A = 1 

INFLOWS: 

RA = A*RRA*(1 - (A/Amax)) 

Amax = 100 

RRA = 0.3 

The resulting bacterial dynamics is shown in Fig. 3.7 with a typical sigmoid curve, with 

which ecologists, microbiologists, and plant pathologists, are so familiar. 

Figure 3.7. Simulated exponential growth with limited growth. Horizontal axis: time 

(hours); vertical axis: number of bacteria. 
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Summary 

This chapter has introduced some key elements of model development: 

 Steps in developing a simulation model including: (1) drawing the relationships

representing the model structure; (2) choosing a time frame, a time step, and an

integration procedure; (3) running the model, and see the outputs as graphs or tables; and

(4) checking the program corresponding to the model which has been developed.

 A very simple system of bacterial growth has been used to illustrate the concepts of rate of

growth of a state variable and of relative rate of growth.

 Changes in the value of the relative rate of growth (RRA) have profound consequences in

the numerical outcomes of simulations - but not in the shapes of the simulated curves.

Varying RRA and assessing the behavior of the system may be seen as a preliminary,

qualitative, example of sensitivity analysis.

 The notion of driving function (variable) - of a variable which lies outside the boundaries

of the considered system, but may influence it - is introduced. In the bacterial growth

example, where the effect of oscillating temperature on RRA is used. Although

temperature variation does affect the running value of the rate of growth (RA), it does not

truly affect the overall behavior of the system: an exponential process is retained.

 The notions of limited growth and carrying capacity of a system are introduced. This has

dramatic consequences on the behavior of the system, and yields a sigmoid growth.
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Exercises and questions 

1. The rate of growth in case of the exponential growth of a variable N is

a. RG = r × N × (1-(N/Nmax))

b. RG = r × N2

c. RG = r × N-1

d. RG = r × N

2. Increasing the relative rate of growth in case of the exponential growth of a variable N

a. Does not affect the dynamics of N

b. Increases the rate of growth

c. Increases the final value of N

d. Decreases the rate of growth

3. A driving function

a. Can be constant over time

b. Corresponds to processes simulated within the system

c. Can vary over time

d. Does not affect the system modeled

4. The rate of growth in case of the exponential growth of a variable N with a carrying capacity

Nmax is 
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a. RG = r × N × (1-(N/Nmax))

b. RG = r × N × (1 – N)

c. RG = r × N-1

d. RG = r × N  × (1+(N/Nmax)

5. The dimension of the relative rate of growth of a variable N having an exponential growth is

a. [N.T-1]

b. [N.N-1.T-1]

c. [N.N-1]

d. does not change if the equation of the rate of growth includes a carrying capacity

Answers to exercises and questions 

1. d: RG = r × N

2. b: Increases the rate of growth, and c: Increases the final value of N.

3. a: Can be constant over time, and c: Can vary over time.

4. a: RG = r × N × (1-(N/Nmax))

5. b: [N.N-1], and d: does not change if the equation of the rate of growth includes a carrying

capacity 
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Chapter 4. A Preliminary Epidemiological Example 

An epidemic may be seen as a whole, an entity to be studied, which we can refer to as a 

process. This process results from underlying mechanisms, which we can refer to as sub-

processes. Therefore, the building blocks of plant disease epidemics, as processes, consist of sub-

processes. For instance, for an aerially dispersed disease, one may consider the following sub-

processes: propagule production, propagule liberation, propagule transport, propagule deposition, 

infection, latency period, and infectious period. The process itself thus consists of linked sub-

processes, monocycle components, which have been collectively called the ‘infection chain’ by J. 

Kranz (1974). It is the concatenation of infection chains that leads to an epidemic. This chapter 

deals with the modeling of an epidemic, as a process, on the basis of knowledge of processes at 

the next lower level of integration, that is to say, the monocycle components. 

One could also model one of the sub-processes, such as propagule formation (for example 

for an asexually reproducing fungus: conidiophore initiation, conidiophore elongation, 

conidiophore branching, spore initiation, spore maturation). One could also consider the system 

where epidemics are sub-processes of a higher-scale process called polyetic epidemics. In this 

case, it is the concatenation of successive individual epidemics, as lower levels of integration, 

which results in polyetic epidemics occurring over many successive seasons, as upper levels of 

integration. The former case might be of interest to study, e.g., how genes involved in spore 

production in a pathogen influence the dynamics of sporulation, which in turn can have 

applications in understanding one of the biological bases of host plant resistance. The latter case 

is of interest in understanding how, and to what extent, successive epidemics are related 

(especially via the primary inoculum), i.e., what is the basis of the carry-over of epidemics across 

time, and this can have applications in disease management over seasons. 

Biology, in general, is concerned with hierarchies of processes. It is up to the scientist to 

choose which level of this hierarchy should be the focus of an investigation. This chapter focuses 

on epidemics. Epidemics, as biological phenomena, can be decomposed in sub-processes, which 

in turn can be decomposed in sub-sub-processes. Systems analysis, in turn, using (among other 

tools) simulation modeling, enables one to investigate and understand the behavior of one level 

of a system's hierarchy, making use of knowledge acquired on the next-lower level of integration 

within a biological hierarchy. 
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This chapter concentrates on one of today's principal structures in plant disease 

epidemiology. This structure remains an important, quite current (e.g., Cunniffe et al., 2012; Van 

den Bosch et al., 2008; Segarra et al., 2001), field of investigation in its own, although having 

been published by Zadoks in 1971 (Zadoks, 1971). The model elaborates on the foundations 

developed by Van der Plank (1963), with the concepts of: 

- infection, 

- latency period, and 

- infectious period, 

which are captured by the differential-delay equation: 

dxt / dt = Rc (xt-p - xt-i-p) (1 - xt) (equation 8.3, p. 100, Van der Plank, 1963), 

where xt is the amount of disease at time t, Rc is the basic infection rate corrected for removals, p 

is the latency period duration, and i is the infectious period duration. 

Components of a preliminary epidemiological model 

The simulation model developed by Zadoks (1971) provides a numerical integration of 

Van der Plank's seminal equation of botanical epidemiology. As in the earlier example, we need 

to first define the system under consideration and its components. 

The system under consideration is a 1-m2 crop area surrounded by similar crop areas. This 

crop consists of sites, which may be healthy (HSites), or infected. Sites that have been infected 

can be partitioned in three, non-overlapping, categories: sites that have been infected but are not 

yet infectious, and therefore are latent (LatS), sites that are infectious and are therefore generating 

propagules (InfS), and sites that are no longer infectious and thus are removed from the infectious 

process (RemS). The notion of site, therefore, refers to those plant tissues that can sustain a given 

infection and give rise to new ones. Sites, therefore, will not be the same depending on the 

pathosystem: for example, in the case of systemic diseases, a site will refer to an entire plant unit, 

whereas for leaf- (or, e.g., fruit-) spotting diseases, a site will refer to a (potential or existing) 

lesion.  

In the following, let us concentrate on the case of a disease that is aerially dispersed and 

causes lesions on leaves. This is an important consideration, because it determines the nature of 

the state variables that are of primary concern in the considered system. In this case, we are thus 

dealing with a population of sites, whose transitions from healthy, to latent, to infectious, and to 

removed, are dynamically tracked.  
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In addition to the choice of system's limits, let us further assume that the time step is one 

day. Many epidemiological models use such a time step, in large part because, for most weather 

data sets available, the climatic day starts at about 7 a.m., and ends the following day at the same 

time. In the intervening time ― a full day ― many epidemiological events happen in our system: 

for instance, spores are produced, liberated, and deposited, and infections take place. 

Epidemiologists are well aware that these events do depend on environmental factors (the 

weather, but possibly the physiological status of the host plants, too) that vary with a much 

smaller time constant (e.g., a wind gust in the canopy, a short shower, or the progressive dry-off 

of moist leaves). However, these factors may only influence mechanisms that are themselves sub-

processes of a sub-process (i.e., the infection process) at hand. In other words, these factors 

influence sub-sub-processes, whereas our endeavor is to numerically integrate sub-processes and 

quantify their consequences at the process level. Yet, one must devise a modeling approach that 

enables to consider sub-processes themselves, without ignoring the possible importance of 

processes at a lower level of integration. This is directly related to the time constant we assume 

the system has. We shall return to this important consideration at the end of this chapter. 

Main equations of the model 

Since the sites are non-overlapping categories, one may write:  

ACI = LatS+InfS+RemS,  

where ACI is the total number of infected sites. However, only infectious sites (InfS) can produce 

propagules which can lead to additional InfS, while infection can only take place on sites that are 

still healthy at one point of time. Thus, it is convenient to calculate: 

CORF = 1-(ACI/(ACI+HSites)),  

where CORF, a 'correction factor' for site availability, represents the proportion of healthy sites 

that are still available for infection, or the probability of a site to be healthy (CORF is strictly 

comprised between 0 and 1). Being a ratio of quantities with the same dimensions ([N]), the 

dimension of CORF is: [N.N-1] ≡ [1].  

In the course of any day, propagules are being produced, released, transported, and 

deposited, and infection may take place on healthy sites. The rate of infection can be expressed 

as: 

INFECTION = DMFR*CORF*InfS 
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In this equation, INFECTION is a rate, and therefore has the dimension of a speed: [N.T-1]. InfS 

is the number of infectious sites at a given point of time ([N]), CORF is the correction factor, and 

DMFR is a daily multiplication factor (Daily Multiplication FactoR). DMFR is the number of 

daily new infections originating from existing, infectious lesions, or, the daily number of 

daughter-lesions per mother-lesion, with dimension [N.N-1.T-1]. In essence, DMFR is analogous to 

the intrinsic rate of bacterial population increase of the previous chapter. From an 

epidemiological standpoint, DMFR, in the mechanistic wording used in this model, exactly 

corresponds to Rc, the basic infection rate corrected by removals used by Van der Plank (1963). 

The dimension of INFECTION is therefore [N.N-1.T-1].[1].[N] ≡ [N.T-1]. It has the dimension of a 

rate, that is, of the speed of a process. 

Note that the INFECTION equation also collapses a number of sub-sub-processes 

together, some of which were mentioned above. In other words, with respect to the daily rate of 

infection, all of which happens in any given day is summarized in the equation for INFECTION. 

This, of course, is a very important simplification, which we make in order to adhere to the above 

principle of systems analysis: explaining a process from its immediately related sub-processes. 

This simplification can, however, be further documented while remaining at the same levels of 

integration. This will be revisited later on. 

Additional elements need to be documented in the model structure. Both the latency 

period and the infectious period are important phases of the disease monocycle. Sites that are in 

both the latent and the infectious stages correspond to two state variables. These state variables, 

however, are of a particular type, because sites remain in these states for specified (and 

epidemiologically important) durations. Such delays in a given state are called residence times. 

Thus, we want to assign a residence time in these two states, p days in the latent, and i days in the 

infectious stage. These have been called 'boxcar trains' (to reflect a series of boxes through which 

each individual progresses; Penning de Vries and Van Laar, 1982), or, using the terminology 

used in STELLA®, 'conveyors'. We need to decide what these residence times are. Let us, for a 

start, assume that p = 6 days and i = 10 days.  

Let us also further assume for the sake of simplicity that values for p and i are fixed 

throughout the duration of an epidemic. Epidemiologists know that this is a strong simplification: 

for instance, as plants become older both p and i may vary, expressing increasing, or decreasing, 

resistance with development. Both parameters are also bound to change during the course of an 

epidemic with weather variables. Simulation modeling (and software such as STELLA® in 
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particular) enables one to incorporate daily changes in values of p and i from driving variables, 

such as the crop development stage or varying temperature. For now, because we want to first 

develop a simple model structure, let us nevertheless assume that both parameters do not change. 

Let us further assume that, as the epidemic starts, both state variables contain no individuals, that 

is, that there are no infected sites in the latent or the infectious stages. 

Initializing the model 

A number of statements need to be made in order to run the model. First one needs to 

specify the population size of the host. Let us assume that the initial number of healthy sites 

(HSites) is 100,000. Let us further assume that the duration of an epidemic is 100 days. 

Next, we need to define a value for the daily multiplication factor, DMFR. Let us, for a 

start, assume that DMFR = 0.3. A value of 0.3 for DMFR means that every day, a (mother) 

infectious site (InfS) can potentially give rise to 0.3 (daughter) infected site through the 

INFECTION rate. 'Potentially' implies here that there is enough 'space' for 0.3*InfS new 

infections to take place, that is, that propagules will reach healthy sites (HSites). In so doing, we 

only express the underlying hypotheses of Van der Plank's (1963) equation. We know that there 

are many constraints on the occurrence of infection besides the availability of healthy sites. We 

shall re-visit this key assumption at the very end of this chapter. 

Another element concerns the initialization of the epidemic. There are several ways to do 

so. One approach could be to place infected sites in the latent stage as a starting point. Instead, 

because we want to be able to vary the date at which the epidemic starts, let us create an 

INOCPRIM parameter representing the amount of primary inoculum, which becomes active at a 

chosen point of time in the course of the growing season, and let us create a connected DAY 

parameter, which simply tracks time in the model (note that under STELLA®, 'TIME' represents 

the elapsing computing time). Let us further decide for now that INOCPRIM generates a single 

influx of new infections through INFECTION. We thus create a starting device, written as: 

INFECTION = (DMFR*CORF*InfS) + INOCPRIM  

DAY = TIME 

INOCPRIM = IF (DAY=1) THEN 100 ELSE 0 

which states that at a given day (here, day 1), there is a single, one-day, influx of active primary 

inoculum (INOCPRIM) resulting in 100 sites becoming infected (latent). 
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Drawing the model's flow chart 

Our model flow chart is shown in Fig. 4.1, and depicts the different state variables and 

parameters, as well as their relationships. Note that the state variables for latent and infectious 

sites are shown as conveyors, and also the series of links determining the rate of infection 

(INFECTION), which reflect the series of assumptions made on state variables and parameters 

that determine its daily value. 

Figure 4.1. Flowchart of a preliminary epidemiological model for an aerially dispersed 

pathogen. HSites: healthy sites; LatS: latent sites; InfS: infectious sites; RemS: removed 

sites; Dis: (visibly) diseased sites; ACI: accumulated infected sites; CORF: correction 

factor for site infection; DMFR: daily multiplication factor; INOCPRIM: primary 

inoculum; DAY: running day. See Figure 2.1 and Table 2.1 for the meaning of symbols. 

Model verification: a first run 

A first stage in model evaluation consists of checking whether the model's program 

executes the intended instructions as originally designed (Penning de Vries and Van Laar, 1982). 

Such a task is easy in the case of this preliminary epidemiological model, and even easier in the 

case of the bacterial population model discussed in the previous chapter. Fig. 4.2 gives a 

graphical output of the dynamics of an epidemic. We can make the following remarks: 

- the amount of visibly infected sites (Dis = InfS+RemS; curve 5) increases in a sigmoid 

pattern, as the stock of healthy sites is being depleted, and the effect of CORF on INFECTION 

comes into effect, slowing down the speed of the epidemic; 
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- the amount of latent lesions (curve 3) progressively increases and then decreases, 

representing, in many ways, the slope of the disease (Dis) progress curve; 

- the amount of infectious sites (curve 2) follows the same pattern as the amount of latent 

lesions, with a delay of about 6 days, that is, as expected, about p; 

- removed sites (curve 4) accumulate regularly, as infected sites exit the latent and 

infectious stages. 

Figure 4.2. First output of a preliminary simulation: healthy, latent, infectious, removed, 

and visibly diseased sites. The values of parameters used are DMFR = 0.3 lesions.lesion-

1.day-1, p = 6 days, i = 10 days, and date of onset is 1. 1: healthy sites; 2: infectious sites; 

3: latent sites; 4: sites removed from the epidemiological process; 5: accumulated visibly 

diseased sites (infectious and removed). Horizontal axis: time (days); vertical axis: 

numbers of sites. 

The overall behavior of the model is, therefore, as expected and shows the patterns of 

disease progress described in so many reports. It does, therefore, conform to the expected. This 

model provides a visual and quantitative solution to the equation developed by Van der Plank 

some 50 years ago (simulation outputs could also be displayed in a tabular manner, which is not 

shown here). 

A key element that simulation modeling brings about is the possibility to see what is not 

visible: Fig. 4.2 displays the dynamics of latent lesions, which, of course, would be impossible to 
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monitor in the field. This same remark applies to removed and infectious sites which, in nearly all 

cases would be impossible to tell apart even for the most experienced field pathologist. 

Simulation modeling, therefore, allows visualization of the behavior not only of the process, but 

of the sub-processes considered. 

Exploring the model's behavior 

The effects of variations of a series of parameters in the model are shown in Fig. 4.3. This 

sensitivity analysis can be summarized as follows: (1) increasing values of DMFR from 0.01 to 

0.5 lesion·lesion·day-1 strongly increases the speed of epidemics (Fig. 4.3a); (2) increasing values 

of p from 1 to 12 days strongly suppresses epidemics (Fig. 4.3b); (3) increasing values of i from 1 

to 20 days strongly increases the final level of disease (Fig. 4.3c); and (4) delaying the epidemic 

from 1 to 30 days strongly reduces the final level of disease as well (Fig. 4.3d). 

Figure 4.3. Sensitivity analyses of variations in DMFR, latency period, infectious period, 

and date of epidemic onset. The simulated number of diseased sites (infectious and 

removed) is displayed in all figures. a: effects of varying DMFR values; b: effects of 

varying values of latency period; c: effects of varying values of infectious period; d: 

effects of varying dates of onset values. The default parameters values are DMFR = 0.3 

lesions.lesion-1.day-1, p = 6 days, i = 10 days, and date of onset is 1. Values of 

parameters which are varied are indicated on the simulated curves. Horizontal axis: time 

(days); vertical axis: numbers of sites. 
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These are well-known effects of key epidemiological parameters (Van der Plank, 1963; 

Zadoks, 1971; Zadoks and Schein, 1979) on plant disease epidemics involving a large number of 

overlapping and concatenated infection chains. This further indicates that the model structure we 

developed conforms to what has become to be known as classical epidemiological theory. 

Another outcome of these runs is, simply, that simulation modeling allows one to "see" 

Kranz's (1974) infection chain in action in a polycyclic process. Often, changes in value of a 

parameter has little immediate effect, but, as disease cycles overlap in the course of an unfolding 

epidemic (Teng, 1983), the compounding effect becomes stronger, sometimes with dramatic 

consequences. 

Revisiting hypotheses 

The development of this model structure, despite its conforming to known 

epidemiological principles, is based on a number of hypotheses. Exploring these hypotheses are 

grounds for very current and active research (e.g., Segarra et al., 2001; Cunniffe et al., 2012). We 

address some of these hypotheses briefly, with a focus on assessing the validity of the model 

structure. 

A first hypothesis concerns the area of the system considered and its boundaries. The 

system under consideration here consists of a 1-m2 crop area surrounded by similar systems. A 1-

m2 crop area may, for instance, be relevant for a cereal or a legume crop. One would obviously 

have to increase this size when considering most perennials or semi-perennial crops. The 

assumption also implies that these boundaries allow fluxes of propagules to enter and exit the 

system in a steady-state. What is implied by 'similar crop areas' surrounding our system is that the 

amount of disease is the same in surrounding areas. It also implies that the crop structure does not 

vary greatly, so that the microclimatic conditions would, in our system, be representative of the 

conditions that prevail in neighboring, equivalent systems. In this preliminary epidemiological 

example, the system under consideration is kept as simple as possible; the limited size of the 

system, the variability of the host population size over time, the consequences the host population 

size may have on microclimate or disease spread, for instance, are disregarded for the sake of 

simplicity. The hypothesis of a limited system surrounded by similar systems with which it is in a 

dynamic equilibrium (e.g., flows of propagules, heat, water vapor) is often referred as the 'mean 

field' hypothesis. Although the model may have usefulness in its ability to understand and 
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compare quantitatively sub-processes (components of the epidemiological monocycle) in 

determining the outcome of processes (epidemics), the 'mean field' is a very strong hypothesis 

which must lead to cautious interpretation of results. 

Another hypothesis is that we refer here to aerially-dispersed (fungal or bacterial) 

diseases. This has two implications; one is that the model structure deals with processes that are 

typical of aerial dispersal. The other implication is that the population of sites which is 

considered consists of fractions of leaf tissues that potentially may become lesions. Regarding 

this second implication, one should note that the same model structure can effectively be used to 

address sites of other dimensions in a host population hierarchy, from fractions of leaves, to 

leaves, to shoots, or entire plants (Savary et al., 2012). 

A further assumption in the model is that we chose to use a one-day time step. This leads 

us to collapse the liberation-transport-deposition-infection process into a single rate, 

INFECTION, governed by DMFR and CORF. One must question whether DMFR could possibly 

be kept constant throughout a cropping season. DMFR can actually be made dependent on time, 

whether because weather varies (and thus affects dispersal and infection sub-sub-processes) or 

host tissues become less and less susceptible over time as they age. In the case of weather 

variation, driving functions (e.g., air temperature) could be entered in the model as tabulated 

values using STELLA® and Excel®. Simple assumptions can also be made. In the case of 

ageing, and increasingly resistant, tissues, let us for instance assume that DMFR decreases 

exponentially as: 

DMFR = 0.3*EXP(-k*DAY) 

where k is a positive extinction coefficient. The outputs of three values for k (0: no resistance, 

0.005: moderate resistance, and 0.01: strong resistance) are plotted in Fig. 4.4, showing again 

how DMFR strongly influences the behavior of the model. 
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Figure 4.4. Simulated disease progress with exponentially decreasing values of DMFR.  

The simulated number of diseased sites (infectious and removed) is displayed. Upper, 

medium, and lower curves are simulated with an extinction coefficient over time of 0, 

0.01, and 0.005, respectively. See text for details. Horizontal axis: time (days); vertical 

axis: numbers of sites. 

Similar approaches could be used if one wanted to address other sub-sub-processes, such as spore 

germination, germ tube elongation, penetration, and establishment of host-pathogen interaction, 

leading to actual infection. 

Conversely, one can hardly imagine that, in the real world, both the latency, p, and 

infectious, i, periods would remain constant throughout a 100-day epidemic (e.g., Cunniffe et al., 

2012). The current model architecture is flexible enough to incorporate such changes. For 

instance, the TRANSFERT rate between the two boxcars representing the latency and the 

infectious periods can be made also a function of temperature (in addition to the inherent 

characteristics allowing such state variables to vary properly; de Wit and Goudriaan, 1978). Let 

us assume that, for instance, during the 100 days, the environmental conditions (say, an 

increasing temperature) translate into having increasing values of p. This can be simulated, and 

the simulation outputs are shown in Fig. 4.5. The increasing value of p leads, as expected, to a 

slower disease progress, and to a lower final disease intensity. 
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Figure 4.5. Simulated disease progress curves with constant (upper curve) or varying 

(lower curve) temperature influencing the latency period duration, p. The lower curve is 

associated with days when temperature may be high, leading to an increase in p. The 

simulated number of diseased sites (infectious and removed) is displayed. Horizontal axis: 

time (days); vertical axis: numbers of sites. 

The preliminary model in a broader context (1): the basic infection rate corrected for removals 

Let us look backward, and consider again Van der Plank's differential-delay equation: 

dxt / dt = Rc (xt-p - xt-i-p) (1-xt), 

and let us remember that the preliminary simulation model discussed here provides a numerical 

integration of this equation. Two key differences between analytical and numerical integration 

can be highlighted. While analytically solved equations produce exact solutions, numerical 

integration over a chosen time interval, Δt, only generates numerical estimates, which however 

can easily be derived, even when parameters vary over time. Simulation modeling provides an 

easy way to integrate Van der Plank's equation, which is quite complicated analytically (Madden 

et al., 2007). 

The preliminary model in a broader context (2): the basic reproduction number 

The total number of newly infected individuals resulting from a single infected individual 

occurring in a totally healthy population has been referred to as the basic reproduction number 

(or ratio), R0 (Diekmann et al., 1990). R0 has been extensively used in human and animal 

epidemiology (e.g., Molisson, 1995). In botanical epidemiology, R0 is the progeny-parent ratio, or 
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the number of daughter lesions per mother lesion, when the mother lesion is established in a 

population of healthy individuals (Van den Bosch et al., 1988a; Zadoks and Schein, 1979; Van 

der Plank, 1963). The concept of R0 has recently been the subject of strong interest in botanical 

epidemiology, under the mathematical framework of linked differential equations (e.g., Segarra 

et al., 2001; Madden et al., 2007).  

The preliminary model in a broader context (3): linking Rc and R0 

Considering the infectious ― the reproductive ― life-time, that is, from t = 0 to t = i, of 

the first infection being established in a population of sites that are all susceptible, one may write:  







it

t

RcR
0

0

R0 (also called gross reproduction) has also been shown to be an important parameter to consider 

when analyzing disease focus expansion (Van den Bosch et al., 1988a; 1988b). Links between 

developments in medical and botanical epidemiology in terms of R0 and Rc were discussed later 

on in several studies (e.g., Jeger and Van den Bosch, 1993). R0 is a very appealing concept, 

because of its clear definition, its biological meaning, its possible decomposition in biological 

processes, and because it is an important factor determining epidemics. R0 is, however, very 

difficult to estimate (Van den Bosch et al., 2008b). Several approaches have been offered, 

including:  

- deriving equations relating r, the apparent rate of infection, or rl, the logarithmic infection rate 

(sensu Van der Plank, 1963) to R0 or Rc (Van der Plank, 1963; Van den Bosch et al., 1988b; 

Sun and Zeng, 1994; Segarra et al., 2001);  

- using matrix population models (Van den Bosch et al., 2008);  

- experimental measurement (Van den Bosch et al., 1988); and 

- approaches combining experiments and models (Allorent et al., 2005). 

One way to see the preliminary epidemiological simulation model described here is that it 

allows the computation of the product of DMFR by i, at successive, discrete time steps. This 

product in turn corresponds to R0. R0 encompasses the entire infectious lifetime of a lesion, 

whereas Rc considers each (infinitely small) time step over time during the infectious period. 

Thus, in the same way as Rc, R0 varies over time and depends on weather variables, e.g., 
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temperature and leaf wetness (e.g., Papastamati and Van den Bosch, 2007; Zadoks and Schein, 

1979). 

Van der Plank (1963) stated that no plant disease epidemic can start unless Rc.i > 1, an 

inequality known to epidemiologists as 'the threshold theorem'. This inequality simply states that 

if an infectious site does not give rise to a new infection, then no epidemic would take place. 

Much work has elaborated on the threshold theorem (Madden et al., 2007).  

The mean field hypothesis 

Whichever approach is chosen, whether analytical or numerical, the model considered 

here is based on the major assumption that all healthy sites are equally accessible for infection, or 

that, conversely, propagules all have equal probabilities to reach and (possibly) infect healthy 

sites. This is what may be called a mean field hypothesis. Canopies are, in the real world, 

heterogeneous; leaves or fruits, or plant organs ― sites, in general ― are not all equally exposed 

to incoming inoculum; tissues vary in their susceptibility; gradients of propagule dispersal vary 

widely across pathosystems, and these gradients often depend on several, not one, dispersal 

mechanisms; or again, the microclimate in a canopy (say, in an apple tree, but in a wheat or rice 

field, too) is bound to show spatial variability. All these elements, which may explain why an 

epidemic occurs, or why it does not, are left aside at this stage. What has been shown in this 

chapter truly is a preliminary model. Simulation modeling is one approach that enables to explore 

further the 'what if' questions that we have. 

Simulations 

The STELLA® model provided with this chapter (EPIDEM.STMX) will allow you to 

explore the model structure and equations, and run the model with varying values of DMFR, p, i, 

and onset date of epidemics, to see the effects of such changes on the simulated epidemics.  A 

listing of the program can be found in Appendix 4.1. 

Summary 

This chapter shows and assembles the building blocks of a preliminary epidemiological 

simulation model. 

 The main equations governing the model are explained.

 Ways to initialize the model are shown.
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 The model behaves as expected, providing a verification of its structure and its equations.

 The model behaves as expected from pathosystems that correspond to its structure:

variation in some key parameters (e.g., the durations of the latency and infectious periods,

the intrinsic rate of disease increase - called here the daily multiplication factor, and the

date of epidemic onset) translate in logical epidemiological patterns.

 Simulation modeling allows one to "see" the infection chain in action in a polycyclic

process, with the compounding effects of parameter values influencing overlapping

disease cycles of an epidemic.

 The many simplifying hypotheses of the model are discussed.

 The model structure developed in this chapter is discussed with respect to other current

modeling approaches.

 A STELLA® model provided with this chapter (EPIDEM.STMX) can be used to see the

effects of parameter changes on the simulated epidemics.
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Exercises and questions 

Questions 

1. A sub-process is

a. 1 hierarchy level below the process level

b. 2 hierarchy levels below the process level

c. 1 hierarchy level above the process level

d. 2 hierarchy levels above the process level

2. State variables of an epidemiological simulation model can include

a. the rate of infection

b. the duration of latency period

c. the number of latent sites

d. the correction factor

3. The rate of infection in an epidemiological simulation model can be written as

a. RG = RemS * DMFR

b. RG = (DMFR*CORF*InfS) + INOCPRIM

c. RG = (DMFR* INOCPRIM) + (CORF*InfS)

d. RG = (CORF*InfS) +  INOCPRIM

4. The dimension of the rate of infection is

a. [N]

b. [N.T-1]

c. [N.T-2]

d. [N.N-1.T-1]

5. The following state variables may have an initial value set to zero
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a. number of healthy sites

b. number of latent sites

c. number of infectious sites

d. number of removed sites

Answers to questions 

1. a: 1 hierarchy level below the process level.

2. c: the number of latent sites.

3. b: RG = (DMFR*CORF*InfS) + INOCPRIM

4. b: [N.T-1]

5. b: number of latent sites, c: number of infectious sites, and d: number of removed sites.

Appendix 4.1. Program listing of EPIDEM 

HSites(t) = HSites(t - dt) + (- INFECTION) * dt 

INIT HSites = 100000 

OUTFLOWS: 

INFECTION = (DMFR*CORF*InfS)+INOCPRIM 

InfS(t) = InfS(t - dt) + (TRANSFERT - REMOVAL) * dt 

INIT InfS = 0,0,0,0,0,0,0,0,0,0 

TRANSIT TIME = 10 

INFLOW LIMIT = INF 

CAPACITY = INF 

INFLOWS: 

TRANSFERT = CONVEYOR OUTFLOW 

OUTFLOWS: 

REMOVAL = CONVEYOR OUTFLOW 

LatS(t) = LatS(t - dt) + (INFECTION - TRANSFERT) * dt 
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INIT LatS = 0,0,0,0,0,0 

TRANSIT TIME = 6 

INFLOW LIMIT = INF 

CAPACITY = INF 

INFLOWS: 

INFECTION = (DMFR*CORF*InfS)+INOCPRIM 

OUTFLOWS: 

TRANSFERT = CONVEYOR OUTFLOW 

RemS(t) = RemS(t - dt) + (REMOVAL) * dt 

INIT RemS = 0 

INFLOWS: 

REMOVAL = CONVEYOR OUTFLOW 

ACI = LatS+InfS+RemS 

CORF = 1-(ACI/(ACI+HSites)) 

DAY = TIME 

Dis = InfS+RemS 

DMFR = 0.3 

INOCPRIM = IF (DAY=1) THEN 100 ELSE 0 
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Chapter 5. An Epidemiological Model Including Crop Growth and Senescence 

One of the many simplifying hypotheses that was made in developing the preliminary 

epidemiological model in the previous chapter concerns the number of sites, which was kept 

constant for the entire duration of epidemics. The implicit assumption was therefore made that a 

fixed initial stock of healthy sites was set at the beginning of an epidemic (and of a crop cycle), 

and left to decline under the effect of the rate of infection as an epidemic progresses. A crop that 

does not grow for 100 days does not exist. In this chapter, we want to account for crop growth, 

that is to say, the progressive build-up of healthy sites. Furthermore, we wish to account for the 

fact that, as time goes by, many sites senesce, implying that, as the crop grows and the epidemic 

builds up, fewer sites are made available to infection, not only because they might become 

infected (and so, not available anymore to infection), but also simply because they are senesced. 

Lastly, we would like to achieve these goals with as few, simple, hypotheses as possible. 

Adding components (and hypotheses) to the model 

Let us use the model developed in the previous chapter to incorporate crop growth and 

senescence. The overall structure of the modified model is shown in Fig. 5.1. 

Figure 5.1. One needs to model crop growth, and thus create a rate of crop growth 

(RCG). For the sake of simplicity, let us assume that crop (site) growth is logistic. We 

thus have to create a carrying capacity, which represents the maximum size the site 

population may achieve, MaxS. 
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One needs to model crop growth, and thus create a rate of crop growth (RCG). For the 

sake of simplicity, let us assume that crop (site) growth is logistic. We thus have to create a 

carrying capacity, which represents the maximum size the site population may achieve, MaxS. 

As for all the site-variables (most of which are state variables in the model), the 

dimension of the parameter MaxS is [Nsite], although the considered system has a finite size 

(e.g., 1 m2 of a wheat crop in a large field). The proper dimension of site variables thus should be 

[Nsite.L-2]. However, from the onset of the previous chapter, the size of the system - again, an 

important hypothesis the model has - has been implicit. Thus, we shall retain [Nsite] as a 

dimension from now on. 

The logistic rate of growth is proportional to the amounts of individuals (i.e., sites) that 

are contributing to growth. Let us further assume that only healthy sites (HSites) do so, that is to 

say that, once infected (latent, infectious, or removed), infected sites no longer contribute to 

growth. The rate of crop growth can therefore be written as: 

RCG = RRCG*HSites*(1-(HSites/MaxS)) 

Let us also assume that crop growth starts with a small number of sites, 100, with a 

carrying capacity of 100,000 sites (MaxS = 100,000), and a relative rate of growth of 0.1 site·site-

1·day-1. This latter assumption implies that each site gives birth to 0.1 new site at each time step.

The result of crop (site) growth in the absence of disease is shown in Fig. 5.2. 

Figure 5.2. Simulated crop growth (number of sites, blue) and of crop growth rate (red) in 

a healthy crop. Horizontal axis: time (days); vertical axis: numbers of sites. 
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We want next to incorporate senescence in the model. Senescence is indeed a very 

complex process (e.g., Gardener et al., 1985; Lim et al., 2003), which occurs in any crop stand, 

whether healthy or diseased. To incorporate such processes is tempting. Doing so would however 

imply involving complicated processes, and we would rather keep the model as simple and 

tractable as possible. A comparatively simple approach would at least involve including 

development, that is, the successive transition of sites through different physiological stages, in 

addition to growth, that is, in addition to the mere incrementing (and/or subtraction) of sites over 

time. Crop development will be addressed in the following chapters. What is proposed here is to 

take a shortcut, and assume that the rate of senescence (RSEN) is numerically equal to the rate of 

removal from the epidemiological process: 

RSEN = REMOVAL 

While another hypothesis will be discussed at the end of this chapter, let us ponder now 

what this equation implies. As the crop is being established, very little disease, if any (see below), 

is present. At that stage, one can safely assume that both removal and senescence are equal and 

null. In a second stage, once infected, sites go through the delays of latency and infectiousness. 

This takes a few days, corresponding to the latency period p then the infectious period i. During 

this second stage, removal is at most small, and so is senescence. In a third stage, as the epidemic 

truly builds up, post-infectious sites start to accumulate as removed sites. In this third stage, 

senescence, too, tends to increase. Thus, for any disease, one may assume that equating the rates 

of senescence to that of removal is phenomenologically acceptable (they coincide over time), 

although this reasoning is not physiologically or epidemiologically correct; senescence occurs in 

absence of disease, in the same way as disease may not necessarily lead to senescence. If we take 

as an example a necrotrophic pathogen infecting the foliage, the assumption however appears 

appropriate; removed sites often senesce much faster. Then again, this is generally not the case in 

biotrophic pathogens, as with many leaf rusts on mono- or dicots. Let us accept this as a working 

hypothesis for the time being.  

A third change has to do with the initiation of epidemics. In the preliminary model of the 

previous chapter, epidemics started off with an influx of 100 infections as soon as the process 

started. Since we now start off with 100 (healthy) sites, having them all infected at such an early 

stage of crop growth will not do; crop growth would stop immediately and such a thing is not 

realistic. Instead, the epidemic is started later on.  
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In order to do so, we write INOCPRIM as: 

IF (DAY=20) THEN 100 ELSE 0 

instead of: 

IF (DAY=1) THEN 100 ELSE 0  

which was used in the model of Chapter 4. Furthermore, all the other parameters are set to the 

same default values as in Chapter 4. 

Instead of changing the original structure of epidemic onset we now assume that 100 

infections take place 20 days after crop growth has started. The listing of the program is given in 

Appendix 5.1 at the end of this chapter. 

Verifying the model: model behavior 

A first question is whether such changes have affected the model behavior: not only have 

crop growth and senescence been included, but the onset of disease has been delayed by 20 days. 

These are important changes that need to be addressed first. 

Let us first compare the outputs of the model of Chapter 4 and those of the new model of 

Fig. 5.1, both of them simulating epidemics with onset times at t = 20 days.  

Fig. 5.3 shows dramatic differences in outputs. One is that, in the outputs of the new 

version of the model (Fig. 5.3b), we do not observe a steady decline of healthy sites over time. 

The new outputs show an initial increase then a decline. The maximum number of healthy sites is 

also strongly reduced. Other differences concern the diseased sites. Overall, the number of 

diseased sites is reduced when crop growth is taken into account. In the former (no crop growth, 

Fig 5.3a) simulation, one sees a sigmoid pattern followed by a decline of the latent sites. The new 

outputs show a regular increase of the infectious, removed, and accumulated diseased sites over 

time, while the progress curve for latent sites is sigmoid. These differences in behavior in the 

dynamics of the disease state variables are caused by the comparatively smaller amount of sites 

that are available (healthy) at the early stage of the epidemic, and which only increase 

progressively over time. Thus, at each time step over time, the amount of healthy sites, i.e. the 

carrying capacity of the disease to develop, varies: it initially increases at a moderate rate 

(because crop growth being logistic is proportional to a relatively small number of healthy sites), 

and then the carrying capacity tends to progressively decrease as disease intensifies. In simple 

words, one could say that the disease has less room to develop. 
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Figure 5.3. Simulated dynamics of sites (healthy, infectious, latent, removed, and total 

diseased) in a crop where growth and senescence are not (a, left) or are (b, right) 

simulated. Horizontal axis: time (days); vertical axis: numbers of sites 

Effect of varying rates of crop growth  

One important change in the initial model is therefore crop growth. We can conduct a sensitivity 

analysis, where the relative (or intrinsic) rate of growth is changed. Fig. 5.4 shows the outcomes, 

in terms only of healthy and diseased sites. With RRCG = 0.05, both crop growth and disease 

progress are negligible: this is because healthy sites are infected as soon as they are produced, 

preventing further growth (to which only healthy sites can contribute) occurring. With RRCG = 

0.09, some crop growth occurs, but diseased sites follow a regularly increasing curve, ending, in 

relative terms, with high disease intensity (i.e., Dis/(Dis+HSites), of roughly 70%. With RRCG = 

0.10 (which is the reference value in the earlier verifications), crop growth follows a sigmoid 

pattern, and diseased sites build up regularly, reaching, in relative terms, a fraction of disease 

lower than in the previous run. Thus at the end of the epidemic, intensity is about 50%. 

Interestingly, this relative expression of terminal disease intensity is the same in the following 

runs. With RRCG = 0.11 or 0.15, crop growth becomes faster, and shows a definite terminal 

decline. This decline is caused by the corresponding increase of disease, which now rapidly has a 

larger carrying capacity as the dynamics of growth unfolds. When RRCG = 0.20, crop growth 

reaches the maximum site carrying capacity (100,000 sites), but collapses as disease increases 

exponentially at a high rate: the accumulation of healthy sites provides 'room for maneuver' for 

disease increasing almost freely. 
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Effect of the daily multiplication factor, DMFR 

The previous chapter addressed a series of epidemiological parameters in their effects on 

the behavior of the model. Let us look at one of them, the daily multiplication factor (DMFR) of 

an infectious lesion. Three values for DMFR are tested in Fig. 5.5: DMFR = 0.30, which is the 

standard value used in this chapter, and DMFR = 0.25 or DMFR = 0.35. 

Figure 5.4. Simulated epidemics at varying relative rates of crop growth, RRCG. Graphs 

are showing only the simulated numbers of healthy and diseased sites. RRCG values are 

given in each graph. Horizontal axis: time (days); vertical axis: numbers of sites. 
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Figure 5.5. Simulated epidemics at varying values of DMFR: 0.25, 0.30, and 0.35. 

Graphs are showing the variation of healthy, latent, infectious, removed sites, and the total 

number of (visibly) diseased sites. 1: healthy sites; 2: infectious sites; 3: latent sites; 4: 

sites removed from the epidemiological process; 5: visibly diseased (infectious and 

removed) sites. Horizontal axis: time (days); vertical axis: numbers of sites. 
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With DMFR = 0.25, crop (site) growth follows a simple sigmoid pattern. Latent, 

infectious, and removed, as well as visibly diseased (infectious + removed) sites increase 

exponentially, hampering crop growth, but only to a marginal extent. By contrast, when DMFR is 

increased to a value of 0.35, crop growth is strongly suppressed, and the number of healthy sites 

shows a clear decline at the end of the run. A similar decline also occurs for the latent and 

infectious sites, leading to a tapering-off of the visibly diseased sites. 

These three runs also indicate that, with increased DMFR values, the terminal relative 

disease intensities, if expressed in absolute terms (i.e., [Nsite]), do not vary very much. However, 

if expressed in relative terms (i.e., %, that is [Nsite.Nsite-1]), a very strong decline is apparent. 

This additional set of runs thus underline the very strong difference in interpretation attached in 

expressing disease in absolute (that is, numbers, as the state variables used here) or in relative 

terms, which is so common in the epidemiological literature, where many results are reported as 

percentages.  

Modeling senescence in a different manner 

One of the hypotheses the model discussed so far implies that the rate of senescence is 

equal to the rate of removal of diseased sites. Even though explanations were given to support 

this hypothesis, at least from a phenomenological standpoint, further analysis is useful. 

One could, for instance, assume that senescence of healthy sites is only related to plant 

physiology, and could be expressed by an intrinsic rate of ageing of healthy tissues or a rate of 

removal of healthy sites (RRemHS). One could also assume that senescence is influenced by both 

disease and ageing. One simple assumption in that case is to consider the two processes additive, 

that is, without interaction, and write: 

RSEN = RRemHS*HSites + RRemDS*REMOVAL 

where RRemDS is an intrinsic rate of removal of healthy sites caused by disease.  

The above equation was incorporated in the model and the following parameter values: 

RRemHS = 0.00001 and RRemDS = 0. 0001 were used. These values are very small, because 

they are relative rates affecting processes that take place late in the growing season and the 

epidemic, and because the value for RRemDS, which actually is a modifier of a rate, is 10 times 

larger than the value of RRemHS (the rate of removal of diseased sites, Fig. 5.1). The outputs are 

shown in Fig. 5.6, and can be compared with the right hand-side of Fig. 5.3. Both graphs show 

much similarity, except for the decline of healthy sites at the end of the epidemic, which is more 
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visible in Fig. 5.2. This is logical, since senescence is only caused by disease in this case. It thus 

seems that the earlier hypothesis made in the development of the model is acceptable. 

Figure 5.6. Simulated outputs with senescence of healthy tissues made dependent on both 

physiology and plant disease. 1: healthy sites; 2: infectious sites; 3: latent sites; 4: sites 

removed from the epidemiological process; 5: visibly diseased (infectious and removed) 

sites.  Horizontal axis: time (days); vertical axis: numbers of sites. 

Revisiting hypotheses 

As in the previous chapter, the model used here implies a number of assumptions, some of 

which are explicit, and others, implicit. Let us address two explicit assumptions. 

A first hypothesis is that crop (site) growth is logistic. In many cases, this assumption is 

not appropriate. This is especially the case if the sites under consideration were root-sites: root 

growth, in many crops, is very rapid in the beginning of the growing season, and stops long 

before the reproductive stage (in annual crops) is over (e.g., Gardner et al., 1985). The aerial 

tissues of a crop canopy also have an asymmetric rate of growth, which rapidly increases in the 

beginning of the growing season, and progressively decreases later. As a result, a flush of healthy 

sites would become rapidly available to possible infection, with strong differences in the shape of 

disease progress. There are a number of equations to account for such asymmetrical growth, for 

the host or for the pathogen (e.g., Kranz, J., 1976; 1990; Berger, 1981; Madden et al., 2007), and 

we leave it to the interested reader to try and incorporate them in the model, to see the 

epidemiological outcomes. 

The second, actually very strong, hypothesis is that we assumed that only healthy sites 

(HSites) contribute to crop growth. This hypothesis can in turn be partitioned into two questions: 
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(1) are all diseased sites truly not contributing to crop growth, and (2) are all healthy sites equally 

contributing to crop growth, creating a differential in disease occurring in some healthy sites 

rather than others.  

The first question may, to some extent, be related to the biology of the considered 

pathogen. If one is dealing with a necrotroph (Cooke and Whipps, 1980), then infected sites 

become very rapidly dysfunctional (e.g., Savary et al., 1990; Bastiaans, 1993; Lopes and Berger, 

2001), and the underlying hypothesis seems to hold. If one is dealing with a biotroph (e.g., Ayres, 

1981; Mendgen, 1981), then infected sites still continue to be functional, but their photosynthetic 

activity is only directed to the maintenance, growth, and reproduction of the pathogen (e.g., 

Savary et al., 1990; Lopes and Berger, 2001). In the case of some host-pathogen interactions, the 

biotrophic pathogen in fact enhances the photosynthetic activity of infected tissues (e.g., Ayres, 

1981). Thus, one may consider a possible under-estimate of the effect of infection on the 

population of sites, at least among the infected ones, and possibly, among the healthy sites. The 

latter remark brings us back again to the underlying hypothesis of evenly distributed disease in 

plant tissues, in this case, in terms of crop growth – disease progress relationships. This topic will 

be further addressed in the next chapters. There are "shades of grey" in the trophic relationships 

between plants and their pathogens, since a great number of plant pathogens stand between the 

two extremes – biotroph vs. necrotroph.  

The relationships between crop growth and epidemiological dynamics are, indeed, 

complex. The model structure presented here is a very simple one, to which many details would 

have to be added in order to address a specific pathosystem in any detail. The phrase "shades of 

grey" will return in the next chapter, in a completely different setting. 

Perspectives 

This chapter introduces in a very simple manner the complex linkages between a growing 

crop and the epidemic of a disease. Much has been written on the topic, which forms a strong 

component of disease management. The questions of relationships between the host and the 

pathogen, and between crop growth and disease (and harmful agents, in general) will be 

addressed further in the next chapters. 

Simulations 

The STELLA® model provided with this chapter (EPIDEMGRO.STMX) will allow you 

to explore the model structure and equations, and run the model with varying values of the 
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intrinsic rate of crop growth, RRCG and DMFR, to see the effects of such changes on the 

simulated epidemics. 

Summary 

 Incorporating crop growth in a simulation model completely alters the course of an

epidemic, whose shape becomes, overall, more realistic.

 Overall, crop growth provides room for maneuver for the course of epidemics, which

depends on the dynamics of the available carrying capacity of the host population.

 The rate of crop growth itself has also a very strong effect on the modeled dynamics of

epidemics and their outcomes.

 Many hypotheses might be implemented to model crop growth and senescence; in this

section, these hypotheses were kept as simple as possible and the underlying assumptions

are discussed.

 There can be very large implications in expressing disease intensity as an absolute amount

of disease vs. as a fraction of host tissues, that is, disease percentage.

 A STELLA® model (EPIDEMGRO.STMX) allows you to explore the model behavior

with varying values of the intrinsic rate of crop growth, RRCG and DMFR.
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Exercises and questions 

Questions 

1. The rate of crop growth with the hypothesis of carrying capacity can be written as

a. RCG = RRCG*HSites

b. RCG = RRCG*MaxS*(1-(HSites/MaxS))

c. RCG = RRCG*HSites*(1+(HSites/MaxS))

d. RCG = RRCG*HSites*(1-(HSites/MaxS))

2. The dimension of the relative rate of crop growth, RRCG is

a. [N]

b. [N.T-1]

c. [N.N-1.T-1]

d. [N.T-2]

3. An increase in the rate of crop growth will

a. increase the rate of infection

b. decrease the rate of infection

c. not affect the rate of infection

Answers to questions 

1. d: RCG = RRCG*HSites*(1-(HSites/MaxS))

2. c: [N.N-1.T-1]

3. a: increase the rate of infection
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Appendix 5.1. Program listing of EPIDEMGRO 

HSites(t) = HSites(t - dt) + (RCG - INFECTION - RSEN) * dt 

INIT HSites = 100 

INFLOWS: 

RCG = RRCG*HSites*(1-(HSites/MaxS)) 

OUTFLOWS: 

INFECTION = (DMFR*CORF*InfS)+INOCPRIM 

RSEN = REMOVAL 

InfS(t) = InfS(t - dt) + (TRANSFERT - REMOVAL) * dt 

INIT InfS = 0,0,0,0,0,0,0,0,0,0 

TRANSIT TIME = 10 

INFLOW LIMIT = INF 

CAPACITY = INF 

INFLOWS: 

TRANSFERT = CONVEYOR OUTFLOW 

OUTFLOWS: 

REMOVAL = CONVEYOR OUTFLOW 

LatS(t) = LatS(t - dt) + (INFECTION - TRANSFERT) * dt 

INIT LatS = 0,0,0,0,0,0 

TRANSIT TIME = 6 

INFLOW LIMIT = INF 

CAPACITY = INF 
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INFLOWS: 

INFECTION = (DMFR*CORF*InfS)+INOCPRIM 

OUTFLOWS: 

TRANSFERT = CONVEYOR OUTFLOW 

RemS(t) = RemS(t - dt) + (REMOVAL) * dt 

INIT RemS = 0 

INFLOWS: 

REMOVAL = CONVEYOR OUTFLOW 

ACI = LatS+InfS+RemS 

CORF = 1-(ACI/(ACI+HSites)) 

DAY = TIME 

Dis = InfS+RemS 

DMFR = 0.3 

INOCPRIM = IF (DAY=20) THEN 100 ELSE 0 

MaxS = 100000 

RRCG = 0.1 
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Chapter 6. Modeling the Effects of Host Plant Resistance on Plant Disease Epidemics  

One of the many applications of simulation modeling in plant disease epidemiology 

pertains to host plant resistance, which can be seen as a major, and possibly the most important, 

contribution of botanical epidemiologists to sustainable agriculture (Johnson, 1984). The case of 

partial resistance deserves specific attention, because it illustrates very well the connection 

between experimental research and conceptual thinking encapsulated in modeling work. Studies 

on host plant resistance provide numerous examples of the research loop: induction - testing - 

deduction. This section will show that simulation modeling can make this research loop forward-

looking, and enable research to consider the outcomes of choices. Recent advances in molecular 

plant pathology (Poland et al., 2009) actually now offer a bridge between epidemiology and 

molecular pathology through simulation modeling.  

The induction phase involves (1) observing, exploring (experimentally), and designing the 

considered system and its structure (modeling); the testing phase (2) involves the measuring of 

epidemiological parameters, the (experimental) quantification of the system, that is, of epidemics, 

model parameterization, model verification, and comparing simulation outputs with field data 

(modeling); and the deduction phase involves (3) assessing levels of resistance of novel, existing 

or potential, genetic material. Modeling can thus become a very powerful tool for phenotyping 

host plant resistance.  

The nature of host plant resistances 

Host plant resistance in plants comes in many forms. Early works (Van der Plank, 1963; 

Flor, 1946; 1971; Agrios, 2005), from the "host point of view", emphasized horizontal or vertical 

resistances, and from the "pathogen point of view", emphasized specificity or non-specificity. 

After decades of research, these clear, almost Manichean, divides have come to be questioned. 

From the host point of view, the very nature of host plant resistance is now seen as a much more 

complex phenomenon than initially thought, with many different facets and outcomes. Complete, 

pathogen-specific, resistance, which was long perceived fragile, because it can, on principle, 

easily be overcome by pathogen populations under heavy selection pressure, is now seen from a 

different perspective; some of these complete resistance genes do appear to confer durable 

resistance (Poland et al., 2009). In other words, there are different types of complete resistance. 

These different types of complete resistance are thus mirrored by differences in the genetic make-
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up of pathogen populations. Indeed, durable host plant resistance has been, and still is, the 

ultimate goal of plant pathologists, geneticists, and breeders alike (e.g., Robinson, 1976; Bonman 

et al, 1992). The reasons for the central importance of this goal is that durable resistance, a 

science-based, seed-borne technology, can comparatively be easily deployed, and does not have 

negative environmental impacts on human and animal health. Durable resistance can also be 

readily available, especially if carried by inbred (or perennial) varieties, to resource poor farmers, 

who still represent the bulk of the world farmers' population today. 

One often speaks today of qualitative resistance (QLR) and quantitative resistance (QDR). 

Quantitative (i.e., partial, or incomplete) resistance comes in different shades of grey (Poland et 

al, 2009). It has been recognized long ago that qualitative resistance may be associated to one 

locus, and that it can be overcome (e.g., Eversmeyer and Kramer, 2000). This has for instance led 

to the recent massive epidemic of new strains of wheat stem rust (caused by Puccinia graminis 

Ug99) that are virulent on cultivars carrying widely deployed R-genes (Stokstad, 2007). More 

recently, QLR genes have been shown to vary, some of them providing long-lasting resistance 

despite the selection pressure they cause (Poland et al., 2009). Recent results suggest that QDR 

and QLR may in part be actually determined by the same genetic bases, which had long been 

envisioned (e.g., Parlevliet and Kuiper, 1977). The latter point might perhaps explain why some 

QLR provide more durable resistance - being associated with QDR. 

Simulation modeling offers a critical tool to bridge knowledge and understanding 

between molecular geneticists, breeders, and plant disease epidemiologists. One main reason is 

that simulation modeling enables one to 'see' what otherwise could not be monitored at the 

systems level ― be it plant, field, or region. Another reason is that simulation modeling can 

provide a very strong tool to help phenotyping genetic materials (e.g., Zadoks, 1977; Rapilly, 

1979; Savary et al. 1990; Andrade-Piedra et al., 2005), which perhaps represents the main 

bottleneck of breeding programs today. 

Components of resistance: general definitions and operational definitions 

There is a great deal of difference between a general definition and an operational 

definition (Zadoks, 1972a), which however are sometimes confused. General definitions can be 

phrased through sentences and refer to concepts. General definitions are open to debate and offer 

the possibility of sharing among a large number of scientists. Operational definitions, on the other 

hand, are developed under the premise that the general definition is accepted and are phrased in a 
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practical, often numerical or algebraic form. Operational definitions are thus the practical 

implementation of the general definitions they correspond to, and thus can be seen as 'recipes', to 

apply concepts in a specific context. Operational definitions may enter in such detail that they 

lose the general, conceptual, value of the general definitions they were borne from. The case of 

components of resistance is one good example of the translation of general definitions to 

operational ones. 

A component of partial resistance (i.e., of quantitative resistance), as a general definition, 

is one independent element of a chain that contributes to hampering, to some degree, disease 

progress. If a combination of components of partial resistance affects the disease cycle 

collectively, epidemics may be suppressed. Considering the classical infection chain (Kranz, 

1990), which connects each individual stage of a pathogen's life cycle (which could be seen as a 

state variable of the disease cycle seen as a system of its own), one should further consider that 

components of resistance must not overlap, because each of them affect one specific stage of the 

disease cycle (Zadoks, 1972b).  

The latter remark may have important practical applications. In times where phenotyping 

host plant resistance has become the most difficult part of breeding programs, it may be critical to 

be able to link a given QTL or gene to a particular component of resistance. Phenotyping for host 

plant resistance, especially for partial resistance, which has been elusive for so many decades, 

and might be within reach given the molecular tools available today, could thus remove a 

bottleneck of many breeding programs, at least for quite a few pathosystems. 

Arithmetic operational definitions of components of resistance 

Operational definitions for components of partial resistance corresponding to the 

epidemiological model discussed in the previous chapters have been developed by Zadoks and 

Parlevliet in a series of publications (Zadoks, 1972b; Parlevliet, 1977; 1979; Parlevliet and 

Zadoks, 1977). A component of partial resistance is a dimensionless relative resistance 

coefficient, RR, which varies between 0 and 1: 

0 ≤ RR ≤ 1 

in which 1 corresponds to the highest level of resistance for this component (which means that no 

further progress in the disease cycle is made beyond the corresponding stage of the cycle), while 

0 corresponds to maximum susceptibility. In other words, when RR = 1, the disease cycle is 
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stopped at the corresponding stage of the disease cycle, and the epidemic halts; if RR = 0, there is 

full susceptibility, and the pathogen is allowed to pass this stage unhampered. 

In the prototype epidemiological model developed so far, we can consider four 

components of resistance: for infection efficiency (IE): RRIE; for sporulation (SP): RRSP; for 

latency period duration (LP): RRLP; and for infectious period duration (IP): RRIP. 

The previous chapters have shown that while resistance increases with smaller IE, SP, and 

shorter IP, resistance decreases with shorter LP. Thus, the equations for relative resistances will 

vary depending on the direction with which decreasing observed values of IE, SP, LP, and IP will 

be. Operational definitions are meant to use observations, and what is observed by breeders is 

always relative. Large breeding programs always have a reference. When it comes to partial 

resistance, one can never be sure to have, within a given field experiment, the highest possible 

level of resistance. But what is available is the currently lowest level of resistance, a reference for 

susceptibility, which can be used as a control. In the case of partial resistance, the best practical 

reference therefore is a susceptible cultivar, c. 

Assuming that the cultivar to be tested is denoted x and that the control is denoted c, the 

operational definitions for components of partial resistances therefore can be written as relative 

resistance terms (RR), which are functions of x and c: 

RRIE(x) = 1 - [IE(x)/IE(c)]; 

RRSP(x) = 1 - [SP(x)/SP(c)]; and 

RRIP(x) = 1 - [IP(x)/IP(c)]. 

These equations are based on the assumption that a cultivar x will have values of IE, SP, 

and IP smaller than (or equal to) the susceptible control. Note that, because IE(x) ≤ IE(c), SP(x) ≤ 

SP(c), and IP(x) ≤ IP(c), all these terms follow the above condition: 0 ≤ RR ≤ 1. This is because, 

at the highest possible level of observed susceptibility:  IE(x) = IE(c), SP(x) = SP(c), and IP(x) = 

IP(c).  

In the case of latency period duration, however, resistance will correspond to higher LP 

values. Thus a slightly different equation: 

RRLP(x) = 1 - [LP(c)/LP(x)]. 

As indicated earlier, RRIE, RRSP, RRIP, and RRLP are relative resistance terms, each of 

which corresponding to a unique, non-overlapping, step of the infection chain: therefore, they can 

be called components of resistance. 
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The question then arises on how to combine these components, that is, how to express the 

relative resistance of a host genotype that carries different levels of each of the separate, 

independent, components of resistance. The combined relative resistance, RRc, of a variety 

carrying several components of resistance must meet the following conditions (Zadoks, 1972b; 

Savary et al., 1990): 

a) 0 ≤ RRc ≤ 1;

b) if all the relative resistances (RRi) corresponding to all components (i) are null, then

the combined relative resistance (RRc) is null;

c) if any one of the values of the p components is equal to 1, then RRc = 1;

d) if any one of the values of the components is ≠ 0, then RRc ≠ 0.

Such a set of conditions are met by the following equation (Savary et al., 1988): 

       p 

RRc = 1 - {Π (1 - RRi )} 

       1 

where p is the number of components of resistance involved. 

For instance:  

if:  

RRIE = RRSP = RRIP = RRLP = 1, then  

RRc = 1 - {(1 - RRIE) * (1 - RRSP) * (1 - RRIP) * (1 - RRLP)} 

        = 1 - {(1-1) * (1-1) * (1-1) * (1-1)} = 1 - 0  

and: RRc = 1 

if:  

RRIE = RRSP = RRIP = RRLP = 0, then 

RRc = 1 - {(1 - RRIE) * (1 - RRSP) * (1 - RRIP) * (1 - RRLP)} = 1 - 1  

and: RRc = 0 

if:  

RRIE = RRSP = RRIP = RRLP = 0.5, then 

RRc = 1 - {(1 - 0.5) * (1 - 0.5) * (1 - 0.5) * (1 - 0.5)} = 1 - {1 - 0.54} =  

and: RRc = 0.9375 

if one of the components of resistance takes a value of 1 (the disease cycle cannot proceed), for 

example the first component: RRIE = 1, while RRSP = RRIP = RRLP = 0, then 

RRc = 1 - {(1 - 1) * (1 - 0) * (1 - 0) * (1 - 0)} = 1 - {1 - (0 * 1 * 1 * 1)} = 1 - 1 

and: RRc = 0 
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The above equation for calculating RRc on the basis of individual components of 

resistance is well known to plant pathology. Long ago, G.W. Padwick (1956) used the same 

equation to assess crop losses in the British colonies, the idea being that what has been lost once 

cannot be lost twice, thus a product of successive terms.  

But this equation can be interpreted in a third way. From a probabilistic stand point, 

calculating RRc as a product implies that the values taken by each different (non-overlapping) 

component of resistance reflect independent events. Calculating RRc with the above formula thus 

assumes that components of resistance, as traits, are governed by independent genetic bases, thus 

assuming a bridge between phenotypic expression and genetic information. If such were the case, 

one could envision a straightforward relationship between the phenotypic make-up of a given 

variety (its field response) and its genetic make-up. Unfortunately components of resistance, 

however, are often correlated in their phenotypic expression (e.g., Savary et al., 1988) and may 

have common genetic bases (Poland et al, 2009). 

Operational definitions of components of resistance in simulation modeling 

The earlier arithmetic equations for components of resistance can be translated for 

simulation modeling purposes. For a given cultivar x, the epidemiological parameters IE, LP, SP, 

and IP, can be corrected according to the corresponding components of resistance as follows:  

IEcor = IE(x) = IE(c) * (1-RRIE); 

SPcor = SP(x) = SP(c) * (1-RRSP); 

IPcor = IP(x) = IP(c) * (1-RRIP); and  

LPcor = LP(x) = LP(c) / (1-RRLP). 

Simulation modeling allows addressing each of the processes of the disease cycle 

independently and the components of resistance that are attached to them. Over the course of an 

epidemic, disease cycles may quickly overlap and the effect of a given component of resistance 

can no longer be detected by the observer. A main advantage of simulation modeling compared 

to the arithmetic approach outlined above is that it readily enables analyzing the effects of 

components of resistance on epidemics. In particular, modeling enables disentangling the 

individual effects of components of resistance in an explicit manner. 
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Implementing components of resistance in a simulation model 

The four components of resistance described above can easily be incorporated in the 

simplified model developed so far. In a first stage RRIE and RRSP will be addressed, then 

RRLP, and lastly RRIP. 

In the previous chapters, the rate of infection was calculated as: 

INFECTION = (DMFR * CORF * InfS) + INOCPRIM,  

where INFECTION is the rate of new infections per day (dimension: [N.T-1]), DMFR is our 

numerical equivalent of Van der Plank's (1963) rate of infection corrected for removals (i.e., the 

number of new infections per lesion per day [N.N-1.T-1]), CORF is the fraction of sites still 

available to infection ([N.N-1]), InfS is the current number of infectious sites ([N]), and 

INOCPRIM is an inflow of infectious propagules ([N.T-1]). 

Let us consider DMFR in a little more detail, and say that it consists of the product of two 

components: first, the inflow of propagules (spores) that may lead to infections, and second, the 

infection efficiency of these propagules (Zadoks, 1971). Thus: 

DMFR = IE * SP, where:  

DMFR ≡ [Nlesion.Nlesion

-1.T-1];  

Botanical epidemiology deals with two interacting populations: that of the plant host, 

which is represented by sites, and that of pathogen units. Pathogen units may take many forms, 

but for the sake of simplicity, let us assume that two types of pathogen units are considered here: 

lesions and propagules. The translations of lesions into propagules, and from propagules into 

lesions, are complex processes. We cannot address here the extremely diverse range of life cycle 

strategies plant pathogens have, despite their importance. What is important at this stage is to be 

are aware of the possibility of these transitions: some lesions produce propagules, and some 

propagules (sometimes, very few indeed) produce lesions. Thus, speaking of the number of 

pathogen units, one may use the same dimension: [Nlesion] ≡ [Npropagule]. 

IE is the number of lesions generated per effective propagule (i.e., effectively coming into 

contact with the host):  

IE ≡ [Nlesion.Npropagule

-1] ≡ [Nlesion.Nlesion

-1];  

and SP is the number of propagules produced per lesion per unit time:  

 SP ≡ [Npropagule.Nlesion

-1.T-1] ≡ [Nlesion.Nlesion

-1.T-1]. 
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SP is thus directly linked to InfS, the number of infectious sites, and their ability to produce 

propagules that may cause new infections, and IE accounts for the efficiency of these propagules 

to infect. The equation for INFECTION can then be written as: 

INFECTION = (IEcor * SPcor) * InfS * CORF + INOCPRIM 

with  

IEcor = IE(c) * (1-RRIE) = 0.3 * (1-RRIE),  

since IE(c) = 0.3 is the infection efficiency of the reference susceptible cultivar, and  

SPcor = SP(c) * (1-RRSP) = 1 * (1-RRSP),  

since SP(c) = 1 is the term used for the reference susceptible cultivar (i.e., each lesion produces 

one propagule that potentially may lead to infection at each time step); this also amounts to the 

equivalency: SP = InfS. 

RRLP and RRIP, being delay functions, are handled differently in the model. In the case 

of the latency period duration, longer LP values correspond to stronger resistance, while it is the 

opposite in the case of the infectious period. Thus: 

LPcor = LP(c) / (1-RRLP) = 6 / (1-RRLP) 

since 6 days was the default value for the residence time of lesions in the latent stage. Since this 

is a residence time, this change is not made on the inflow to the state variable for latent lesions, 

LatS (which would amount to changing the rate of infection) but to the rate of outflow from the 

latent stage. Similarly: 

IPcor = IP(c) * (1-RRIP) = 10 * (1-RRIP)  

since 10 days was the value chosen to represent maximum susceptibility in the previous versions 

of the model. Again, this change is applied to the outflow from the infectious stage, towards 

removal. 

These changes are shown in the flow diagram of Fig. 6.1, and the program listing is 

provided in Appendix 6.1.  
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Figure 6.1. Flowchart of an epidemiological simulation model incorporating 

components of resistance. 

Important remarks 

In the above paragraph, we considered DMFR as the product of the inflow of propagules 

(spores) that may lead to infections by the infection efficiency of (effective) propagules, i.e.: 

DMFR = IE * SP. This enabled us to incorporate in the model components of resistance for 

infection efficiency and propagule production.  

What is meant here by "propagule production" needs clarification. In the case of an 

aerially-dispersed pathogen, the classical stages are: "propagule formation", "liberation", 

"transport", and "deposition" (e.g., Kranz, 1978; Zadoks and Schein, 1979). Equivalents could be 

determined (and operationally defined; Butt and Royle, 1980) in the case of vector-borne (e.g., 

Madden et al., 2000) or soil-borne (e.g., Gilligan, 1990) diseases.  

Therefore, what we refer to here as "propagule formation" (SP) covers, in an admittedly 

loose way, several, complex, and concatenated processes of the infection chain. Specifically, for 

a vector-borne pathogen, SP refers to the number of propagules that have been acquired from a 

mother lesion, then transmitted and inoculated to a target host site, which may become a daughter 

lesion. 
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The very notion of lesion may vary from disease to disease. In some cases, individual root 

segments or fractions of leaves will do; in others, one will better focus on shoots or fruits; and in 

many diseases, one should consider entire plants. For instance, in the case of many vector borne 

diseases, the notion of lesion may be a whole plant or a tree (Savary et al. 2012). 

Again, this brings us back to the critical issue of choosing the right state variables of a 

system and its limits, which were introduced in Chapter 1. 

Let us focus a little more on aerially dispersed diseases. In this case, SP refers to those 

propagules that have been produced, liberated, transported, and deposited on a host site (whether 

infected or not). In the case of many aerially dispersed pathogens, the corresponding lesion often 

is a fragment of host tissue (e.g., a spot on leaf or fruit) or a fragment of host unit (e.g., a shoot, 

or a branch; Savary et al. 2012). Thus, SP is a shortcut, and refers to the number of propagules 

that are effectively made available for potential infection, per unit time and per "mother" lesion. 

Still, much detail could be experimentally measured and accounted for in a mechanistic 

model. In the case of peanut rust, for instance (Savary et al., 1990), the above processes, and 

others, were taken into account through relative rates of: 

 liberation (which depends on relative humidity and the occurrence of rainfall),

 exhaustion of uredosori after a dispersal event (which depends on relative humidity and

the occurrence of rainfall),

 deposition (which depends on whether the canopy is dry or not),

 survival and death of spores after they have been deposited (a function of time since

liberation),

 spore leaching from pustules in the canopy if rainfall exceeds a given threshold.

Whether such details truly are necessary must be pondered. This was not incorporated in this 

modeling exercise. 

Simulated effects of components of resistance 

A first question one may want to address is whether and to what extent the combinations 

of components of resistance may suppress epidemics. In a first set of runs all the components of 

resistance were made equal (RRi), and three runs were performed: RRi = 0 (no partial resistance), 

RRi = 0.1 and RRi = 0.2. The results are shown in Fig. 6.2, with very strong effects, even when 

all components of resistance are set to 0.1. 
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Figure 6.2. Overall simulated effects of increasing levels of components of partial 

resistance, where RRIE = RRSP = RRLP = RRIP = RRi are set to three values, 0, 0.1, and 

0.2. 1: healthy sites; 2: infectious sites; 3: latent sites; 4: sites removed from the 

epidemiological process; 5: accumulated visibly diseased sites (infectious and removed). 

Horizontal axis: time (days); vertical axis: numbers of sites. 
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A second question concerns which component of resistance has the strongest suppressive 

effect, given the model structure we developed, and its underlying hypotheses. The outputs of 

such analysis are shown in Fig. 6.3, where each component was given a value of 0.2 in turn. The 

first run (top left) is identical to the simulation shown at the top of Fig. 6.2, where all components 

of resistance are null. The second run pertains to RRIE or RRSP, since any partial resistance on 

these two components have the same bearing within the chosen model structure. In that case, the 

terminal level of disease is not strongly reduced, but the rate of the epidemic is strongly reduced, 

with a disease progress curve becoming exponential, while it is logistic in the absence of 

resistance. The latent, infectious, and removed progress curves are also strongly reduced in their 

rates. A strong increase in crop growth also occurs. The effects of a partial resistance in the latent 

(RRLP) or infectious (RRIP) stages have graphically similar effects. Comparing the effects of an 

increased RRLP and RRIP, however, indicates a strong reduction in the terminal numbers of 

latent and infectious sites. If the simulation run were longer (e.g., 150 instead of 120 days; not 

shown), an increased RRLP leads to a near-complete exhaustion of sites, except for the post-

infectious (removed) ones, and a collapse of the healthy sites; whereas an increased RRIP in 

effect delays the exhaustion of latent and infectious sites and, surprisingly, enables a renewed 

increase of healthy sites in the end of the run. 

Figure 6.3. Simulated effects of individual components of resistance. 1: healthy sites; 2: 

infectious sites; 3: latent sites; 4: sites removed from the epidemiological process; 5: 

accumulated visibly diseased sites (infectious and removed). Horizontal axis: time (days); 

vertical axis: numbers of sites. 
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Dealing with pathogen diversity 

Pathogen diversity is a fact, which accounts for, among many other things,  resistance 

genes being overcome. For a long time, the process of resistance genes being overcome was 

considered to apply to qualitative resistance only: a qualitative (complete) resistance exerts such 

a selection pressure that isolates of the pathogens that can overcome the qualitative resistance 

emerge and replace the former pathogen genotypes. Could this be so in the case of partial 

resistance? In the beginning of this chapter, a brief overview of the diversity of resistances was 

given. One may consider that such a diversity also exists among pathogens (which may vary in 

terms of virulence or avirulence, or in degrees of aggressiveness), as well as among the 

mechanisms through which resistances may be overcome. 

Let us consider a simplified case where only two isolates of the same pathogen occur. 

Isolate 1 has the following characteristics: 

 it represents 95 of the 100 initial infections at epidemic onset (t =20 days);

 the cultivated variety has a low level of partial resistance to isolate 1, with RRIE = RRSP

= RRLP = RRIP = 0.1;

while isolate 2 has the corresponding characteristics: 

 it represents only 5 of the 100 initial infections at epidemic onset;

 the cultivated variety has no partial resistance to isolate 2.

The results of the simulations are shown in Fig. 6.4. In terms of proportion of isolates 

(expressed as 'visibly' diseased sites), the dynamics of isolate 2 of course is delayed. 

Nevertheless, with a much stronger slope, the final number of sites diseased with isolate 2 is 

higher. This particular output illustrates again one of the major strengths of modeling; that is, its 

ability to 'see' disease progress, whereas, of course, lesions caused by different isolates cannot be 

visually distinguished. 

Crop growth is affected as in the previous outputs, with a sharp decline at the end of the run, 

while the removed sites accumulate. 

The dynamics of the two isolates are quite different. The outputs at the bottom of Fig. 6.4 

show the value of the rates of infection (INFECTION) of both isolates. While that of isolate 1 is 

initially high, it rapidly slows down, and tapers off. By contrast, the rate of infection of isolate 2 
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is initially very low, then increases sharply to a much higher maximum, and declines too, but 

only at the end of the simulation, as the dual epidemic is running out of healthy sites. Similarly, 

the numbers of latent and infectious sites are much higher for isolate 1 than isolate 2 at the onset 

of the epidemic. If another simulation were executed using the final values of this run, isolate 1 

would be displaced by isolate 2, and the partial resistance would be overcome. Over successive 

seasons (or if the crop cycle were longer), this would lead to a population displacement, where 

the more aggressive strain of the pathogen would eventually dominate. 

Perspectives and challenges 

The possibility of implementing integrative biology at the system level would represent a 

major scientific milestone. Progress in molecular biology is now such that never has this 

possibility been so real. Simulation modeling could play a key role in such advances, especially 

to breed durable host plant resistances. New genomic platforms in crop species, such as a nested 

association mapping populations, are providing unprecedented tools to identify quantitative trait 

Figure 6.4. Dual dynamics of two isolates with differing adaptations to partial resistance. 

Note that the dynamics of isolates include the variation of the rate of infection over time. 

1: healthy sites; 2: infectious sites; 3: latent sites; 4: sites removed from the 

epidemiological process; 5: accumulated visibly diseased sites (infectious and removed). 

Horizontal axis: time (days); vertical axis: numbers of sites. 
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loci (QTLs; Poland et al., 2009). Linking field ("phenotyping") data to molecular information 

through simulation modeling might become a reality (Yin et al., 2004), bridging several levels of 

integrations of life (from the gene to the individual plant, and to the plant population; de Wit and 

Goudriaan, 1978). This is fraught with difficulties, of course, but worth considering, for instance, 

through stepwise integration of sub-models. Difficulties might not lie only in the modeling, but in 

the use of suitable, reliable phenotyping data too (Parlevliet, 1979). 

Challenges are also related to the nature of the host plant, or the pathosystem: 

 some host crops may be more difficult to handle than others, making breeding programs

more difficult;

- because of their seeds: working on cereals is far easier than on tuber crops, for

instance; 

- because of their life cycle ― the life cycle of a cassava crop lies between 12 to 18 

months (with no sexual reproduction occurring in the field); perennials are very 

difficult to address, not only because of their long life cycles, but also their complex 

genetic make-ups; 

 partial resistance can be very hard to address in some pathosystems. Soil-borne and

vector-borne pathogens were mentioned at the beginning of this chapter, thus difficulties

arise from

- the complexity of the underlying system (vector-borne diseases); or difficulties in

observing and measuring processes (soil-borne diseases), or both; 

- and, ironically, some pathosystems are hard to address because they involve such a 

simple life-cycle of the pathogen. Such is the case of blights caused by, e.g., 

Rhizoctonia solani.  

- the above problem may be compounded by the fact that epidemics are so strongly 

dependent on crop growth (they actually can be termed 'canopy-borne', even if the 

inoculum is not). This leads to the complex task of partitioning the effects of QTLs 

that affect plant habit, of QTLs that may influence partial resistance, or both 

(Srinivasachary et al., 2011).  
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Simulations 

The STELLA® model provided with this chapter (EPIDEMRES.STM) will allow you to 

explore the model structure and equations, and run the model with varying values of components 

of resistance, and see their effects on simulated epidemics. 

Summary 

 Simulation models can be used to address host plant resistance, especially quantitative

host plant resistance.

 Simulation modeling can thus become a very powerful tool to phenotyping host plant

resistance, because it allows one to track, over time, processes that cannot be seen, and

can be linked with current advances in molecular breeding.

 A component of partial resistance (i.e., of quantitative resistance) is one independent

element of a chain that contributes to suppressing, to some degree, disease progress.

 A component of partial resistance is equivalent to a dimensionless relative resistance

coefficient, RR, which varies between 0 and 1: 0 ≤ RR ≤ 1.

 Components of partial (quantitative) resistance can be defined, for instance for infection

efficiency, spore production, infectious period and latency period: RRIE, RRSP, RRIP,

and RRLP.

 Conversely, a relative (quantitative) resistance, RRc, of a variety carrying several

components of resistance can be calculated.

 These components can be implemented in the simulation model developed so far, and the

effects of each component, alone or in combination, can be assessed.

 Pathogen diversity, in terms of varying levels of aggressiveness, can be addressed as well.

An example of a variety with components of resistance confronted with two isolates

differing in aggressiveness is given, where quantitative (partial) resistance is overcome,

leading to population displacement by a more aggressive pathogen strain.

 A STELLA® model is attached, allowing users to run the model with varying values of

components of resistance, and see their effects on simulated epidemics.
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Exercises and questions 

Questions 

1. A component of resistance

a. can take values above 1

b. can affect different processes of the monocycle

c. affects only one process of the monocycle

d. decreases when its effect on the monocycle processes increases

2. The different components of resistance

a. may have different effects on the simulated epidemics

b. have the same effects on the simulated epidemics

c. have an additive effect when combined

d. have a more than additive effect on epidemics when combined

3. Do components of resistance have a direct effect on yield?

Answers 

1. c: affects only one process of the monocycle.
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2. a: may have different effects on the simulated epidemics, and d: have a more than additive

effect on epidemics when combined. 

3. No. Components of resistance slow epidemics down. They may have, through this reduction of

disease, a strong effect on yield in some cases.  

Appendix 6.1. Program listing of EPIDEMRES 

HSites(t) = HSites(t - dt) + (RCG - INFECTION - RSEN) * dt 

INIT HSites = 100 

INFLOWS: 

RCG = RRCG*HSites*(1-(HSites/MaxS)) 

OUTFLOWS: 

INFECTION = ( (IEcor*SPcor) * CORF * InfS) + INOCPRIM 

RSEN = REMOVAL 

InfS(t) = InfS(t - dt) + (TRANSFERT - REMOVAL) * dt 

INIT InfS = 0,0,0,0,0,0,0,0,0,0 

TRANSIT TIME = varies 

INFLOW LIMIT = INF 

CAPACITY = INF 

INFLOWS: 

TRANSFERT = CONVEYOR OUTFLOW 

TRANSIT TIME = 6*LPcor 

OUTFLOWS: 

REMOVAL = CONVEYOR OUTFLOW 

TRANSIT TIME = 10*IPcor 

LatS(t) = LatS(t - dt) + (INFECTION - TRANSFERT) * dt 

INIT LatS = 0,0,0,0,0,0 

TRANSIT TIME = varies 

INFLOW LIMIT = INF 

CAPACITY = INF 
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INFLOWS: 

INFECTION = ( (IEcor*SPcor) * CORF * InfS) + INOCPRIM 

OUTFLOWS: 

TRANSFERT = CONVEYOR OUTFLOW 

TRANSIT TIME = 6*LPcor 

RemS(t) = RemS(t - dt) + (REMOVAL) * dt 

INIT RemS = 0 

INFLOWS: 

REMOVAL = CONVEYOR OUTFLOW 

TRANSIT TIME = 10*IPcor 

ACI = LatS+InfS+RemS 

CORF = 1-(ACI/(ACI+HSites)) 

DAY = TIME 

Dis = InfS+RemS 

IE = 0.3 

IEcor = IE*(1-RRIE) 

INOCPRIM = IF (DAY=20) THEN 100 ELSE 0 

IPcor = 1*(1-RRIP) 

LPcor = 1/(1-RRLP) 

MaxS = 100000 

RRCG = 0.1 

RRIE = 0 

RRIP = 0 

RRLP = 0 

RRSP = 0 

SPcor = 1-RRSP 
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Interlude: What Has Been Omitted So Far? 

The short answer to the above question is: quite a lot indeed. The purpose of the previous 

chapters was not to provide a comprehensive overview of methods and approaches in modern 

botanical epidemiology, which is provided in several references especially in Madden et al. 

(2007). What we tried instead is to provide a stepwise introduction to mechanistic simulation 

modeling, as one of the many methods available to botanical epidemiology. The choice of this 

approach was made because modeling attracts many plant scientists who, however, are deterred 

by the mathematics that might be involved. Note that much of the relationships we have used so 

far to analyze epidemiological systems are very simple. These relationships are closer to basic 

physical ones (thus the reference to dimensions in equations), rather than mathematical ones. 

Yet many epidemiologists will rightly be prompt to point at the many gaps we left behind 

us. In the following elements, we briefly try to address at least some of these gaps from a 

practical modeling perspective. The points that are indicated below should not be seen as a 

check-list of gaps (there are more), but as a series of elements we feel are particularly important, 

especially the very last one. 

Patterns of epidemics 

Only one pattern of epidemics has been discussed in the prototype model developed from 

Chapter 4 onwards. This model implies that, in the course of a cropping season, each lesion 

produces a progeny of new lesions. Such epidemics are called polycyclic (e.g., Van der Plank, 

1963; Zadoks and Schein, 1979). Many plant disease epidemics are not based on this pattern. 

After all, the notion of successive, then overlapping, waves of sites that become infected, 

then infectious, and later removed is based on the quite anthropomorphic notions of a crop and of 

a cropping season. One may thus see a crop, from the (typical, but not sole) western point of view 

as a cohort, i.e., a population of plants whose development is nearly the same, having been 

established at the same time in a cultivated field. Many agricultural systems do not, however, 

consist of cohorts, nor are they homogeneous. In quite a few respects, they are thus closer to 

natural ecosystems. This point is briefly addressed below. 

Some epidemics are caused by pathogens that produce only one wave (one generation) of 

propagules per season. Such epidemics are called monocyclic (e.g., Van der Plank, 1963; Zadoks 

and Schein, 1979). A typical example is that of some (specialized) diseases infecting flowers 
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(Ngugi and Scherm, 2001). Such epidemics can be of extreme importance, such as ergot (Agrios, 

2005; Zadoks, 2008). There are different reasons why epidemics might be monocyclic. One is 

that the host is susceptible for a very short period of time, such as in the case of some flower 

diseases (Ngugi and Scherm, 2001); but another reason can be that the pathogen produces so very 

few propagules that only one wave of infection occurs in the course of a cropping season. The 

latter case prompted Zadoks and Schein (1979) and Ngugi and Scherm (2001) to compare such 

pathogens to K-strategists, as opposed to r-strategists, which cause polycyclic diseases, to bring 

us back to classical ecological concepts (May and McLean, 2007). 

Confusing patterns of epidemics 

Many diseases caused by soil-borne pathogens have been, and still are, often perceived as 

monocyclic diseases. This, actually, is often not true: even if there are few infections, even if the 

distance range of new infections from the mother lesion is small, many soil-borne diseases 

actually are polycyclic (e.g., Willocquet et al., 2008). In a key article, Pfender (1982) clarified the 

difference between deriving a model from the known biology of the disease, and the opposite: 

"the error [is] that the nature of the disease cycle is being inferred from the disease progress 

curve. The nature of the disease must be determined before an appropriate model can be 

chosen." This emphasizes the importance of focusing on processes and modeling them, as 

opposed to describing, even numerically, phenomena. In other words, the emphasis is on the 

importance of deriving models that truly have biology-related parameters (vs., for example, 

statistical models). 

Many epidemic patterns may be considered 

From an evolutionary perspective, one might admit that the notions of polycyclic or 

monocyclic epidemics are rather academic. As with any organism (Dodds, 2009), the point of 

view of the pathogen is to (1) survive, (2) multiply, (3) spread, and, in so doing, (4) adapt. 

Whether these processes happen during one or several cropping seasons, in fields cultivated with 

one or several plant species, in environments that are temporally and/or spatially uniform, does 

not really matter: failing to achieve any one of these steps means extinction. Phrased otherwise, 

the spatiotemporal diversity of agroecosystems is the context where these four events must take 

place; conversely, the spatiotemporal diversity of agroecosystems may, in some cases, be 

manipulated so that epidemics can be suppressed. 
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Let us consider the successive growing seasons of a vegetable crop, and a soil-borne 

disease, caused by, for example, Rhizoctonia solani. Let us further assume that the epidemic is 

monocyclic during a given growing season. The very fact that seasons follow after seasons will 

lead individual monocyclic epidemics to be concatenated in what was termed by Zadoks and 

Schein (1979) a polyetic epidemic. Each epidemic contributes to increasing the stock of soil-

borne primary inoculum. Modeling this accumulation, its remobilization, and the effects of 

various crop management components, represents a very useful exercise to both understand and 

manage a difficult case. Difficulties arise due to few options for disease management, the 

pathogen has an extremely wide host range, and vegetable growers cannot easily shift to new 

lands, especially in peri-urban areas where vegetable growing is a most profitable activity. Such 

polyetic epidemics have so far been very poorly studied (e.g., Amorim and Bergamin Filho, 

1991), but one might want to consider them as a particular form of polycyclic epidemic, 

characterized by having, at the beginning of each growing season (1) a new cohort of host plant 

(or host tissues, for perennials) is established and (2) the pathogen population has been reduced, 

and/or underwent a phase during which it had to survive without hosts. 

We believe that complicated models do not need to be developed to gain a better 

understanding of patterns in complex systems. The case of household gardens highlights this 

point well. Household gardens are very important systems, agriculturally, socially, culturally, and 

from the point of view of sustainable food security, both in the developing and the developed 

worlds (Niñez, 1987). At times of economic and food crises, such systems may play a critical 

role. Plant pathology, and in general, epidemiology, ecology, and agronomy (as well as the Social 

Sciences and Medicine), might both have an important role to play, as well important lessons to 

learn, in household gardens. These systems often are very complex (e.g., Conway, 1994); yet, we 

believe that much insight could still be gained using un-complicated models. 

The landscapes where epidemics occur may provide opportunity, or hindrance, to disease 

spread. This has been at the center of fundamental thinking for decades. For instance, 

Heesterbeek and Zadoks (1987) devised the notions of order 0 (focal), order 1 (general), and 

order 2 (pandemics) epidemics. In agricultural systems such as the Mekong Delta of Vietnam or 

the Central Plain of Thailand, up to seven rice crops are grown over two years, providing "green 

bridges" for pathogens to spread from one older cohort (field) to a younger one. The 

epidemiology of plant diseases in such environments has been studied in much detail, especially 

with respect to viral diseases, and the models derived by Chancellor, Azzam, and Holt (Azzam 

92



and Chancellor, 2002; Chancellor et al., 2006) exemplify a success story based on clear 

understanding of processes, their quantification, their implementation in models, and leading to 

true application to disease management at the farm and landscape scales. 

The critical importance of space-time interactions 

The so-called 'mean field' hypothesis has been mentioned across the successive examples 

discussed so far. In other words: all the model structures discussed so far implicitly assumed that 

each healthy site, at any point of time, was accessible to infection. Conversely, they also implied 

that each propagule, be it for instance a viruliferous vector or a bacterial spore, had the same 

chance to infect, meaning a propagule that has been through the sequence of dispersal steps 

successfully, and has been lucky enough to (1) not land on bare ground, or on an unsuitable host, 

or in a hostile soil environment, and (2) encounter a site which is not already infected (i.e., a very 

lucky propagule indeed). The 'mean field' hypothesis is suitable for some thinking, but is 

admittedly inadequate for many systems. 

Spatial and temporal processes cannot be distinguished and represent a mainstream area 

of investigation in Ecology (e.g., Renshaw, 1991; May and McLean, 2007), and in Botanical 

Epidemiology (Madden et al., 2007). A keystone article by Jeger (1982) provided a first 

analytical framework of plant disease epidemics in time and space.  

Each epidemic is a unique event. We have not (and will not) speak of stochasticity in this 

module. Xu and Ridout (1996) demonstrated in a very elegant way how the inherent variability in 

the dispersal characteristics of a pathogen, and to a lesser degree, of the initial conditions of the 

modeled pathosystem (amount of primary inoculum) may affect the final spatial distribution and 

the final amount of disease. Being stochastic, their model simulates epidemics as unique 

successions of dispersal and infection events. Simulation outputs show expanding foci as 

propagules are dispersed and as epidemics unfold, sometimes giving rise to secondary foci, or, on 

the contrary, to general epidemics. Their model, in short, matches reality so well that is shows 

how difficult accurately measuring disease can be. 

This transition chapter in neither the right place for expanding on this subject, nor on 

several other aspects we have left behind. Let us simply put it this way: the spatial structure of 

epidemics is very closely associated to their temporal ones. The spread (or extensification) of 

disease in the host population goes hand in hand with its local multiplication (intensification). 

The respective weights of extensification and intensification depend on the pathosystem 
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considered. Without extensification, the pathogen would locally intensify at one or a few sites, 

rapidly reach a local carrying capacity, and die. Without intensification, the pathogen would 

simply be unable to reproduce itself. From the pathogen viewpoint, extensification implies risks 

― from total propagule loss (e.g., deposition on the ground) to the encounter of unsuitable or 

resistant hosts; but it also entails opportunities: encountering more susceptible host sites. 

Aggregated (focal) epidemics lead to low levels of terminal disease, whereas random (general) 

epidemics lead to high levels of terminal disease (Xu and Ridout, 1996). Further, and critically, 

extensification offers the chance to the pathogen to evolve and adapt to different genotypes of its 

host. This is particularly true in complex agrosystems (Lenné and Jeger, 1994). 
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Modeling Crop Losses 

In this short introductory section we want to ask ourselves: what is the use of simulation 

modeling in crop loss understanding and analysis? But before moving into the field of crop loss 

modeling, we need to point out a few elements. 

 Production situations differ widely across world agroecosystems and are undergoing

unprecedented changes (Dyson, 1999; WRI, 2005). One definition for ‘production situation’

refers to a hierarchy of constraints to crop production: from production level 1, where no

limit to crop growth occurs, and is defined only by radiation and plant genotype; to

production level 2, where some water shortage occurs at least for some time of the growing

season; to production level 3, where a shortage of nitrogen may also occur; and to production

level 4, where the above limiting factors are compounded by shortages of phosphorus and/or

potassium (Penning de Vries, 1982; Rabbinge et al., 1989). While this first definition focuses

on crop production, another, holistic definition of a production situation is the 'body of

environmental factors ― physical, biological, social, and economic ― where agriculture

takes place' (De Wit, 1982). While both definitions have value, the latter enables one to link

attainable yields to production situations, as well as to human components such as farmers'

skills, socio-economic factors, and available techniques for future improvement (Van

Ittersum and Rabbinge, 1997), and decisions (McRoberts et al., 2011).

 Crop losses caused by diseases, animal pests, and weeds, range between 20 to 40% of the

yield that would be attained otherwise (e.g., Savary et al., 2005; Oerke, 2006), depending on

the production situations. This obviously represents a massive challenge to food security and

food safety, and cannot be ignored.

 Why do we address epidemiological and crop loss modeling in separate sections in this

module? There are four reasons for this.

1. First, the linkage between epidemics and crop losses is that of a growing crop.

This implies that we shall need to consider some basic agrophysiological

principles.

2. A second reason is that the linkages epidemics-crop losses, on the one hand, and

crop losses-economic losses, on the other hand, are non linear. The relationships

between epidemics and crop losses are represented by damage functions, while

the relationships between crop losses and economic losses are governed by loss

functions (Zadoks, 1985). Thus, the translation of epidemics into crop losses is

not direct, and in fact, is quite complex.
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3. A third reason is that we want to keep our models as simple and tractable as

possible: we want to model for a purpose (Loomis et al., 1979): epidemics on the

one hand, crop losses on the other. Linking the two implies complex feed-backs

and feed-forwards, which, despite their relevance, would detract us from our main

objective of providing introductory working elements to the topic.

4. Lastly, when thinking of crop losses, other harmful agents must be considered in

addition to plant pathogens: animals (especially insects and spiders), and weeds.

As a result, the analysis of crop losses entails the consideration of injuries caused

by an array of crop harmful organisms. We shall see in the following chapters that

considering so many different organisms does not lead to increased complexity.

 Crop losses ― not epidemics ― are the basis for disease management. As a result, the last

three elements of the above imply a crucial issue: understanding and modeling crop losses is

not easy. In particular, thresholds for decisions, whether strategic (before a crop is being

established) or tactical (when the crop is standing) are not static, but variable (Zadoks, 1985;

Rabbinge et al., 1989). One of the several causes for threshold variation is the considered

production situation.

 Both damage and loss functions are highly variable (e.g., Zadoks, 1985; Savary et al., 2000),

for a number of reasons, among which are (1) the nature of the harmful organism, and (2) the

considered production situation (and therefore, the considered attainable, uninjured, yield).

What follows does not dwell on this important topic. Simulation modeling, however, can be

seen as one tool to address it.

Much of what will be developed in the following chapters is derived, with some 

expansion, but also some simplifications, from the book by Rabbinge et al. (1989). As in the 

previous chapters, our aim is to bring forward ideas and methods that can be implemented with 

ease, and we shall try to provide frameworks that are as simple as possible. 

Let us try, at least temporarily, to answer the question we posed at the beginning of this 

introduction. Simulation modeling in crop loss analysis is useful in at least two important areas: 

one is to produce estimates of likely crop losses caused by one (sometimes several) yield 

reducers; another is to assess and rank the importance of yield reducers in terms of crop losses. 

There are other possible applications of simulation modeling. One potential application, which 

was widely shared when simulation modeling was new to the field of plant protection, was that it 

could become a tool to guide crop protection. There has been accumulating evidence, however, 

that this approach was unlikely to bear fruit for a number of reasons (e.g., Butt and Jeger, 1985; 
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Jeger, 2000). Conversely, much simpler approaches based on very solid science could be far 

more successful, such as the EPIPRE program (Zadoks, 1989). 

The second area where simulation modeling is a powerful tool is that, being process-

based, it enables one to not only address "what has been lost", but also what could be gained. In 

other words, the approach enables one to explore scenarios where new crop health management 

approaches (e.g., new genotypes, different crop rotations) would be implemented. This is 

possibly the most exciting reason for using simulation modeling in this area. 
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Chapter 7. Crop Growth Modeling - Introducing GENECROP as a Framework 

 
Modeling the effects of injuries caused by pests (diseases, insects, and weeds) on crop growth 

and yield requires, as a first stage, the modeling of growth and yield of a crop in absence of injuries. 

This chapter will take you through the main processes involved in crop growth, how these processes 

are represented in a quantitative and dynamic manner, and how they are implemented into a simple 

model, which you can explore and run. This chapter starts with the RI-RUE paradigm, which has 

strong connections with the modeling of yield losses, and provides a very simple and robust framework 

to address crop growth under a set of biophysical constraints.  

 
The RI-RUE concept 

RI is the radiation intercepted by the crop canopy and can be written in a simple way using 

Beer's law (Monsi and Saeki, 1953, see also, Goudriaan and van Laar, 1994; Whisler et al., 1986; 

Thornley and France, 2007) as: 

 
 tLAIk

tt eRADRI  1      (7.1)  

 
where RAD is the global solar radiation, that is, the incident radiation above the canopy; k is the 

extinction coefficient; and LAI is the Leaf Area Index (i.e., the area of leaf per area of ground soil, 

dimension = [L2.L-2] with units m2·m-2). The parameter k depends on the direction of the radiation and 

on the orientation of the leaves. Average values for canopies with erect and horizontal leaves are about 

0.6 and 0.8, respectively (Penning de Vries et al., 1989). The intercepted radiation increases with LAI, 

but the rate of increase diminishes as LAI increases. For a given value of LAI, the intercepted radiation 

is larger for canopies with horizontal than erect leaves (Fig. 7.1). 

 

Figure 7.1. Relationships between radiation intercepted and LAI. 
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Monteith (1977) established a robust, linear relationship between the accumulated crop biomass 

and RI. He introduced the concept of Radiation Use Efficiency (RUE), which can empirically be 

estimated as the slope value from the linear regression of accumulated biomass over accumulated RI. 

RUE represents the conversion of radiation energy into biomass. In other words, RUE represents the 

amount of dry biomass (DBM) produced per unit of radiation energy intercepted by the crop canopy. 

An RUE value for crops under non-limiting conditions is about 1.4 g·MJ-1, or approximately 2.8-3.2 

g·MJ-1 of photosynthetically active radiation (PAR; Monteith, 1977). Using Monteith's framework, the 

accumulated dry biomass over a time interval [0, t], (DBMt) can therefore be written as: 

dtRUERIDBM t

t

tt  
0

     (7.2) 

This framework establishing relationships between crop growth, radiation interception, and 

RUE has been used in a very wide range of examples to model crop growth in a simple way (e.g., 

Johnson et al., 1986; Sinclair, 1986; Steer et al., 1993; Richter et al., 2001; Kiniri et al., 2004).  This 

framework is used here because it has also enabled addressing the effects of harmful organisms on 

crop growth in a generic, synthetic manner (see Chapter 8). 

 

Main processes involved in crop growth captured into a simple crop growth simulation model for 

attainable growth and yield – GENECROP 

 

Model system and structure 

The time step of the GENECROP model is one day, and the system modeled is 1 m2 of crop. 

The different processes determining crop growth are embedded into the model in three components, 

which deal with: (1) the dynamics of crop development, (2) the accumulation of crop biomass, and (3) 

the growth in numbers of tillers (or shoots).  A complete listing of the program can be found in 

Appendix 7.1. 

The model structure can be explored by opening the STELLA model GENECROP.STMX and 

clicking on the "explore model" button. The model equations can be viewed by selecting the 

"equation" level on the left part of the panel when opening the file. The flowchart of the model is given 

in Fig. 7.2. 
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Figure 7.2. Flowchart of GENECROP, a generic model for attainable crop growth. 

 

The main processes involved over the course of a crop cycle are: photosynthesis, biomass partitioning 

in growing plants, leaf senescence, and yield build-up. Most of these processes are driven by crop 

development. 

As discussed in the earlier parts of this module, the level of detail in modeling which is 

required to simulate and understand the behavior of a system needs to be carefully pondered. This 

principle applies here, where these processes need to be seen from the point of view of our needs 

(modeling crop growth so that injuries caused by pests can be accounted for, and, eventually yield 

losses, computed), and to our ability (to what extent shall we be able to parameterize the processes 

induced by injuries caused by pests?). Crop growth modeling is a field of research and application in 

its own right, in which we cannot enter in detail here. Some references are given at this end of this 
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chapter for the interested reader. Lines of investigation in this field (some of which are very current) 

include: 

 the root/shoot relationships 

 the remobilization of carbohydrates as harvestable organs grow 

 the detailed analysis of nutrient and water efficiencies in their contribution to growth 

 the physiological effects of symbionts in enhancing crop growth 

 the interaction between plants in heterogeneous systems (inter- and intra-specific diversity) 

 the use of models as aids to chart the path of molecular or conventional breeding (e.g., Yin et 

al., 2004) 

 The choice was made in this chapter to focus on a structure that retains the key elements of a 

simplified system (a growing crop stand), that nevertheless allows one to quantitatively account for the 

effects of crop harmful organisms. Therefore, the processes accounted for and their level of detail have 

been included in GENECROP so that (1) they can be represented in the simplest possible way, while 

(2) being able to include the different damage mechanisms by which crop growth and yield are 

affected by disease (pest) injuries.  

 The flowchart in Fig. 7.2 may seem rather complicated to the unaccustomed eye. Yet this 

flowchart, and the system it represents, actually is based on quite a limited series of processes, which 

have been used in a large number of crop systems: 

1. Crop growth occurs. It depends on the amount of radiation, which the canopy is able to 

intercept at any level of its growth (over time, crops intercept very little, then quite a lot, and 

progressively less radiation as leaves are successively very young, fully established, and 

senescing). 

2. The intercepted radiation is converted into carbohydrates through photosynthesis. 

3. The accumulated carbohydrates are partitioned towards the different organs of a growing crop: 

leaves, roots, stems, and storage (harvestable) organs. 

4. This partitioning process is dependent on the development stage of a crop. Young crops will 

allocate much of their early "earnings" through photosynthesis to roots and leaves; later-on, 

stems and leaves will become important investment organs; and towards the end of a crop cycle 

much of the photosynthates will be allocated to the storage (harvestable) organs. In other 

words, the growth of different organs is made dependent upon development. Physiological 

development in turn is made (as is often done) dependent on temperature. 

5. For the sake of tracking the dynamic effects of damage mechanisms, a small set of variables are 

introduced to monitor the dynamics of shoots (or tillers, in the case of a cereal crop). 
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The different symbols used in GENECROP and their meanings are shown in Table 7.1. 

 
Table 7.1. Variables, acronyms, and examples of units in the GENECROP crop growth simulation 

model 

Variable type Acronym Meaning Units

State variables LEAFB Leaf biomass g·m-2

POOL Pool of biomass produced from photosynthesis g·m-2

REPTIL Number of reproductive tillers (shoots) Ntil·m-2

ROOTB Root biomass g·m-2

STEMB Stem biomass g·m-2

STEMP Sum of temperature above threshold °C·day

STORB Storage organ biomass g·m-2

VTIL Number of vegetative tillers (shoots) Ntil·m-2

Rates DTEMP Rate of increase in sum of temperature °C

PARTL Rate of partitioning of assimilates towards 

leaves 

g·m-2·day-1

PARTR Rate of partitioning of assimilates towards roots g·m-2·day-1

PARTSO Rate of partitioning of assimilates towards 

storage organs 

g·m-2·day-1

PARTS Rate of partitioning of assimilates towards stems g·m-2·day-1

RMAT Rate of tiller (shoot) maturity Ntil·m-2·day-1

RG Rate of crop growth g·m-2·day-1

RMORTV Rate of mortality of vegetative tillers (shoots) Ntil·m-2·day-1

RMORTR Rate of mortality of reproductive tillers (shoots) Ntil·m-2·day-1

RSENL Rate of leaf senescence g·m-2·day-1

RTIL Rate of tillering (of shoot emergence) Ntil·m-2·day-1

RTRANSLOC Rate of translocation of carbohydrates from 

stems to storage organs 

g·m-2·day-1

LAI Leaf area index m2·m-2

Computed 

variables 

TOTIL Total number of tillers Ntil·m-2

k Coefficient of light extinction -

Parameters FST Fraction of sterile tillers (shoots) after flowering -
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MAXTIL Maximum number of tillers (shoots) Ntil·m-2

RRMAT Relative rate of tiller maturity Ntil·Ntil-1

STW Dry biomass of a new tiller (shoot) g·Ntil-1

TBASE Temperature threshold for crop development °C

TFLOW Sum of temperature above threshold to reach 

flowering stage 

°C·day

TMAT Sum of temperature above threshold to reach 

crop maturity 

°C·day

RAD Daily global radiation MJ·m-2 ·day-1

Driving functions 

Weather 

TMIN Daily minimum temperature °C

TMAX Daily maximum temperature °C

CPL Coefficient of partitioning of assimilates towards 

leaves 

-

Interpolated 

variables 

CPR Coefficient of partitioning of assimilates towards 

roots 

-

CPSO Coefficient of partitioning of assimilates towards 

storage organs 

-

CPS Coefficient of partitioning of assimilates towards 

stems 

-

DVE Fraction of assimilates allocated to the 

production of new tillers (shoots) 

-

DVS Development Stage -

RRSENL Relative rate of leaf senescence g·g-1

RUE Radiation Use efficiency g·MJ-1

SLA Specific Leaf Area m2·g-1

 

 

Crop development 

Unlike growth, which is a continuous process of accumulation, crop development, or crop 

phenology, is the progress of a given crop trough successive discrete stages over a crop cycle. Two 

major stages can be distinguished in general: the vegetative and the reproductive stages. Crop 

development is critical when modeling crop growth, because it determines many physiological 

processes and parameters directly. For example, the partitioning of assimilates towards the different 

organs directly depends on the crop development stage. 
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 Following Penning de Vries et al. (1989), the representation of crop development can be made 

in a very simple way, by using a quantitative scale from 0 (emergence) to 1 (flowering) and 2 

(maturity).  

 Crop development mainly depends on temperature, and the development stage DVS of a given 

crop can be computed as: 

TFLOWSTEMPDVS tt /                              if STEMPt < TFLOW  (7.3) 

and 

  )/(1 TFLOWTMATTFLOWSTEMPDVS tt   if STEMPt ≥ TFLOW  (7.4) 

 

Where STEMPt is the sum of temperature above the crop-specific threshold temperature (TBASE), 

TFLOW is the sum of temperature required to reach the flowering stage, and TMAT is the sum of 

temperature required to reach maturity. The schematic relationship between sum of temperature and 

development stage is given in Fig. 7.3. 

 

 

Figure 7.3. Schematic relationship between sum of temperature and development stage. 

TFLOW: sum of temperature needed to reach the flowering development stage; TMAT: sum of 

temperature needed to reach the maturity development stage. The development stage scale is 

defined as 0 = emergence, 1 = flowering, and 2 = maturity 
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Photosynthesis 

Photosynthesis allows the production of assimilates that are made available for plant growth, 

using radiation energy. The computation of the rate of growth (RG) according to photosynthesis can be 

done in a synthetic way (e.g., Van Keulen et al., 1982; Sinclair and Muchow, 1999) as: 

 

 tLAIk
ttt eRADRUERG  1      (7.5) 

 

where RAD is the daily global solar radiation; RUE is the radiation use efficiency (Monteith, 1977; 

Sinclair and Muchow, 1999), that is, the amount of assimilates produced per quantity of radiation 

intercepted by the canopy. The term [1 - exp(-k × LAI)] is the proportion of light intercepted by the 

crop, following Beer’s law; and k is the coefficient of light extinction. Note that equation (7.5) reflects 

the same processes embedded in the framework developed by Monteith (equation 7.2). 

Crop growth models developed to address crop physiological processes at a finer level of detail 

have incorporated respiration and transpiration (to, e.g., analyze the effects of water stress or of pests 

affecting transpiration; e.g., Penning de Vries et al., 1989; Goudriaan and van Laar, 1994). Here, the 

approach using RUE is used, because it allows capturing and analyzing in a synthetic way a number of 

physiological processes in crop growth. 

LAI can be computed from the dry biomass of leaves (LEAFB): 

 

ttt LEAFBSLALAI       (7.6) 

 

where SLA is the specific leaf area (i.e., the leaf area per unit of leaf dry biomass) and is a function of 

the crop development stage. Young leaves are in general thinner, and thus have a higher SLA than 

older leaves. It is therefore expected that SLA declines over time. 

Radiation use efficiency, RUE, represents the overall efficiency of the crop to convert plant 

biomass from intercepted light. RUE thus encapsulates the efficiency of several processes: gross 

photosynthesis, respiration, transportation of photosynthates before on-site biosynthesis, and synthesis 

of complex molecules from photosynthates (e.g., proteins, lipids, polysaccharides). RUE varies 

depending on (1) the efficiency of photosynthesis, which depends on the concentration of leaf N and 

on water availability (Penning de Vries et al., 1989), and; (2) the respective proportion of the different 

types of organic components synthesized from photosynthates: the energy required for the biosynthesis 

of a given compound depends on the type of organic group it belongs to (Penning de Vries et al., 

1989). For example, lipids require much more energy (that is, more glucose) to be synthesized than 
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carbohydrates, the proteins being in an intermediate position (Penning de Vries et al., 1989). The 

proportion of compounds synthesized depends on the crop development stage. 

Thus, RUE varies depending on the crop species, on the crop development stage, and on nutrients and 

water supply of a crop (Sinclair and Muchow, 1999). 

The amount of assimilates that are made available for plant growth (POOL) is accumulated 

daily at the rate of growth, RG: 

 

 tRGPOOLPOOL tttt       (7.7) 

 

Partitioning of assimilates 

Assimilates that are accumulated daily are partitioned to the different plant organs. Most crop 

plants develop four broad types of organs: leaves, stems, roots, and storage organs (e.g., grains, 

tubers). The increase in dry biomass of the different crop organs can be computed as follows: 

 

 tPARTLLEAFBLEAFB tttt      (7.8) 

 tPARTSSTEMBSTEMB tttt      (7.9) 

 tPARTRROOTBROOTB tttt      (7.10) 

 tPARTSOSTORBSTORB tttt      (7.11) 

 

where PARTL, PARTS, PARTR, and PARTSO are the daily flows of assimilates towards leaves, stems, 

roots, and storage organs, respectively. These flows depend on coefficients of partitioning, which in 

turn depend on the development stage: 

 

 tttt CPRCPLPOOLPARTL  1     (7.12) 

 tttt CPRCPSPOOLPARTS  1     (7.13) 

ttt CPRPOOLPARTR        (7.14) 

 tttt CPRCPSOPOOLPARTSO  1     (7.15) 

 

where CPL, CPS, CPR, and CPSO are the partitioning coefficients of assimilates to leaves, stems, 

roots, and storage organs, respectively, at the development stage at date t. CPL, CPST, and CPSO 

represent partitioning coefficients relative to the biomass partitioned above ground. CPR represents the 

coefficient of partitioning towards roots, relative to the total plant biomass. 
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Assimilates produced by photosynthesis are therefore partitioned towards the plant organs, and 

equation (7.7) becomes: 

 

  tPARTSOPARTRPARTSPARTLRGPOOLPOOL tttttttt   (7.16) 

  

In general, partitioning towards roots, stems, and leaves occurs until flowering. From this stage 

onwards, most, if not all, assimilates are partitioned towards the storage organs (Fig. 7.4). 

 

 

Figure 7.4. Typical dynamics of partitioning of assimilates towards the different organs in the 

case of a cereal. 

 

Leaf senescence 

Leaf senescence refers to physiological ageing and occurs towards the end of the crop cycle. 

Leaf senescence can be represented by a loss of leaf dry biomass (RSENL), which can be made 

proportional to a relative rate of leaf senescence (RRSENL) and to the dry biomass of leaves (LEAFB), 

with RRSENL depending on the development stage. 

 

ttt LEAFBRRSENLRSENL      (7.17) 
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Thus equation (7.8) becomes: 

 

  tRSENLPARTLLEAFBLEAFB ttttt     (7.18) 

 

Accumulation and redistribution of reserves 

Carbohydrates can be stored in stems or roots before being translocated towards storage organs 

(Penning de Vries et al., 1989). In the case of cereals, this can be translated in a simple way by 

simulating a flow of biomass from the stems towards the storage organs after flowering. Equations 

(7.9) and (7.11) thus become: 

 

 tRTRANSLOCPARTSTSTEMBSTEMB ttttt  )(    (7.19) 

 ))( tRTRANSLOCPARTSOSTORBSTORB ttttt     (7.20) 

 

where RTRANSLOCt is the daily rate of translocation of starch from stems to storage organs. 

RTRANSLOCt varies with the development stage, and is proportional to the dry biomass of stem at 

flowering. 

 

Dynamics of tillers (or shoots) 

In the following, we shall refer to tillers or plant shoots in an equivalent manner, as 

GENECROP can be used equivalently for a cereal (where the aerial part of a plant ― the unit of a crop 

stand ― consists of tillers as sub-units) or a dicotyledon (where shoots could be considered instead as 

sub-units) crop. Crop growth simulation models do not usually consider the dynamics of plant sub-

units, since consideration of the functioning of a system's unit is sufficient to understand the behavior 

of the system at the higher level of integration (Penning de Vries and Van Laar, 1982). When aiming at 

simulating the effects of pest injuries on crop growth, however, the simulation of tiller (or shoot) 

dynamics may allow direct and relevant simulation of the way injuries affect tiller (shoot) mortality. 

The tiller (shoot) dynamic can be modeled by considering first vegetative tillers (shoots), which 

multiply during the tillering (shoot emission) phase. The tillering rate is assumed to be proportional to 

the rates of leaf and stem growth: 

 

  STWPARTSPARTLRTIL ttt       (7.21) 
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where RTIL is the tillering rate; PARTL is the rate of leaf growth; PARTS is the rate of stem growth; 

STW is the dry biomass of one new tiller.  

During the tillering phase, leaf and stem growth contribute progressively less to generating new 

tillers, and more to leaf production, leaf expansion, and stem elongation. Tiller production is therefore 

seen in the model to compete with tiller growth, with respect to assimilate allocation to stems and 

leaves. This is reflected by introducing the factor (1-(VTIL/MAXTIL)) in equation (7.21), where VTIL 

and MAXTIL represent the number of vegetative tillers and the maximum number of tillers, 

respectively. Tillering is furthermore governed by crop development: when the crop reaches the 

maximum tillering stage, assimilates are not allocated for tillering any more. This is reflected by a 

multiplicative term, DVE, which is made dependent on development stage. Equation (7.21) thus 

becomes: 

 

      ttttt DVEMAXTILVTILSTWPARTSPARTLRTIL  /1   (7.22) 

 

The shift from the vegetative phase to the reproductive phase corresponds to the maturation of 

vegetative tillers (shoots), which become reproductive. This is reflected by a rate of maturity (RMAT; 

which depends on development stage), which flows from the number of vegetative tillers (VTIL) to the 

number of reproductive tillers (REPTIL): 

  

tt VTILRRMATRMAT       (7.23) 

 

where RRMAT is the relative rate of tiller maturity. 

A fraction of the vegetative tillers, FST, may remain vegetative and not produce any storage 

organ. Furthermore, between maximum tillering and flowering stages, some of the younger tillers die, 

due to competition for light and nutrients with the other tillers. The dynamics of vegetative tillers and 

of reproductive tillers is described by equations (7.24) and (7.25), respectively: 

 

   tRMATRMORTVRTILVTILVTIL tttttt     (7.24) 

  tRMORTRRMATREPTILREPTIL ttttt      (7.25) 

with: 

 ttt VTILRRMORTRMORTV      (7.26) 

ttt REPTILRRMORTRMORTR      (7.27) 
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where RRMORTt is the relative rate of tiller mortality, and depends on development stage. 

 

Model parameters 

The simulation starts at 15 days after crop establishment (DACE), and ends when DVS reaches 

2.  Model inputs and parameters have been chosen to be within the range of values found for crops (or 

cereals) under favorable environments. 

Weather variables used as inputs (driving functions) are daily minimum and maximum 

temperature (which drive the development stage) and daily radiation (which drives the rate of crop 

growth).  Minimum and maximum temperature have been set to 24°C and 30°C, respectively, and are 

kept constant over the duration of the simulation for the sake of simplicity. Global radiation is also 

constant over time, and has been set to 17 mJ·m-2·day-1. 

Parameters for crop development have been set to 1500 °C·day and 2000 °C·day for TFLOW 

and TMAT, respectively, and to 8°C for TBASE (threshold temperature under which the crop does not 

develop).  The main parameters for crop growth have been set to the following values: 

RUE = 1.2 g·MJ-1 (value for a crop under favorable conditions; Monteith, 1977; Sinclair and 

Muchow, 1999) 

k = 0.6 (value for a canopy with erect leaves; Goudriaan, 1977) 

SLA decreases from 0.037 to 0.018 m2·g-1 from emergence (DVS=0) to flowering (DVS=1), 

and from 0.018 to 0.017 m2·g-1 from flowering to maturity (derived from Willocquet et al., 

2004). 

Coefficients of partitioning towards the different organs according to the development stage are 

derived from Willocquet et al. (2004). The maximum number of tillers has been set to 900 tillers·m-2. 

 

Simulations 

The STELLA model GENECROP.STMX will allow you to: 

 explore the model structure and equations,  

 explore the model inputs,  

 explore the model outputs, and  

 run the model with varying values of RUE, so as to observe the effects these changes have on 

the dynamics of the crop growth and on final yield. 

 

The simulated crop growth using GENECROP is displayed in Fig. 7.5. 
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Figure 7.5. Simulated outputs of biomass (upper graph) and number of tillers (lower graph) 

using GENECROP 

 

The model outputs reflect the hypotheses captured in the different equations of the model. Crop 

reaches maturity when DVS equals 2, that is, at 105 days after crop establishment (DACE). The 

biomass of roots increases regularly until 51 DACE, then tapers off at around 60 DACE. Leaf biomass 

increases according to a sigmoid-like shape until flowering (which occurs at 77 DACE), and then 

declines as leaf senescence takes place. Stem biomass increases regularly until flowering, and then 

declines nearly linearly as carbohydrates are translocated towards the storage organs. The dry biomass 

of storage organs increases exponentially, and then nearly linearly, when all assimilates are partitioned 

towards these organs towards the end of the crop cycle. The final yield is about 700 g·m-2, that is, 7 

t·ha-1. 

The number of vegetative tillers increases until maximum tillering, then decreases because of 

tiller mortality due to competition, and finally decreases because vegetative tillers become 

reproductive. The number of reproductive tillers increases when vegetative tillers reach the 

114



 

reproductive stage, and then remains at the same level until the end of the crop cycle, about 500 

tillers·m-2. 

 

 Concluding remarks 

The reader will have noticed that this chapter deals with annual crops, with a definite tinge 

towards cereals. This is a reflection of the authors' main interest, but mainly because such systems are 

comparatively simple. Complication (but not necessarily complexity) may emerge when: 

 one considers crops whose lifespan is long and/or covers several seasons, such as cassava, 

sugarcane, alfalfa, pyrethrum, or banana; 

 the focus of research concerns perennials, e.g., fruit trees, grapevine, or blueberries; 

 crop species or genotypes with indeterminate growth are considered, such as tomatoes or beans. 

Many of the ideas that have been forwarded in this chapter are relevant to such crops, however. 

One, in particular, is the remobilization of carbohydrates from one season to the other, which, for 

example, explains the yearly oscillations of coffee yield in a plantation, the associated variation of 

coffee susceptibility to rust, and so, the yearly oscillations of coffee rust epidemics (Avelino et al., 

2004). 

 

Summary 

This chapter describes: 

 The RI-RUE concept. 

 The main processes involved in crop growth. 

 How they are captured in a quantitative and dynamic way into a generic simulation model, 

GENECROP. 

 The equations, parameters, and flowchart of GENECROP. 

 Includes the STELLA file, which can be used to explore the model structure and the effect of some 

parameters on the simulated dynamics of the model variables. 
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Exercises and questions 

 

1. What is the difference between (crop) growth and development? 

 

2. What is the dimension of a rate of crop growth? What is the dimension of a rate of crop 

development? 

 

3. The increase in crop biomass directly depends on several factors, including 

a. leaf biomass 

b. radiation 

c. LAI 

d. temperature 

 

4. Radiation Use Efficiency, RUE can be expressed with the unit(s) 

a. [g.MJ-1.m-2] 

b. [g.MJ-1 ] 

c. [MJ.g-1.m-2] 

d. [g.MJ-1.m-2.day-1] 

 

5. Crop development 

a. represents changes in crop biomass 
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b. mainly depends on temperature 

c. mainly depends on radiation 

d. determines the partitioning of assimilates towards plant organs 

 

Answers to exercises and questions 

 

1. Crop growth is the accumulation (and possibly decrease) of biomass over time; whereas crop 

development represents the passing of a crop (seen as a cohort, i.e., a population of plants which 

have a similar development stage at a given point of time) through the successive development 

stages of its life cycle. For instance, in cereals, development spans from seeds and their 

germination, to ripening of ears. 

 

2. The rate of crop growth is measured as a quantity of biomass [M] per unit time [T], so a rate of crop 

growth is measured as: [M.T-1]. Development is, by essence, a qualitative attribute, and so does not 

have dimension [ - ], so a rate of development is [T-1]. 

 

3. b: radiation, and c: LAI. 

 

4. b: [g.MJ-1 ].  

 

5. b: mainly depends on temperature, and d: determines the partitioning of assimilates towards plant 

organs. 
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Appendix 7.1. Program listing of GENECROP 

 

LeafB(t) = LeafB(t - dt) + (PartL - RSenL) * dt 

INIT LeafB = 10 

INFLOWS: 

PartL = CPL*Pool 

OUTFLOWS: 

RSenL = rrsen*LeafB 

MaxStemb(t) = MaxStemb(t - dt) + (rmaxstemb) * dt 

INIT MaxStemb = 6 

INFLOWS: 

rmaxstemb = PartLS 

Pool(t) = Pool(t - dt) + (RGrowth - PartS - PartL - PartSO - PartR) * dt 

INIT Pool = 0 

INFLOWS: 

RGrowth = RAD*RUE*(1-EXP(-k*LAI)) 

OUTFLOWS: 

PartS = CPS*Pool 

PartL = CPL*Pool 

PartSO = CPP*Pool 

PartR = CPR*Pool 

REPTIL(t) = REPTIL(t - dt) + (Rmat - Rmortr) * dt 

INIT REPTIL = 0 

INFLOWS: 

Rmat = if DVS<0.8 or DVS>1 then 0 else if VTIL<FST*Totil then 0 else RRMAT*VTIL 

OUTFLOWS: 

Rmortr = rrmort*REPTIL 

RootB(t) = RootB(t - dt) + (PartR) * dt 

INIT RootB = 5 

INFLOWS: 

PartR = CPR*Pool 

StemB(t) = StemB(t - dt) + (PartS - RTransloc) * dt 

INIT StemB = 6 

INFLOWS: 
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PartS = CPS*Pool 

OUTFLOWS: 

RTransloc = IF(DVS>1) then ddist else 0 

STEMP(t) = STEMP(t - dt) + (Dtemp) * dt 

INIT STEMP = 320 

INFLOWS: 

Dtemp = ((TMAX+TMIN)/2)-TBASE 

StorB(t) = StorB(t - dt) + (PartSO + RTransloc) * dt 

INIT StorB = 0 

INFLOWS: 

PartSO = CPP*Pool 

RTransloc = IF(DVS>1) then ddist else 0 

VTIL(t) = VTIL(t - dt) + (Rtil - Rmat - Rmrtv) * dt 

INIT VTIL = 250 

INFLOWS: 

Rtil = PartLS*STW*(1-(VTIL/Maxtil))*DVE 

OUTFLOWS: 

Rmat = if DVS<0.8 or DVS>1 then 0 else if VTIL<FST*Totil then 0 else RRMAT*VTIL 

Rmrtv = (rrmort*VTIL) 

CPL = CPPL*(1-CPR) 

CPP = CPPP*(1-CPR) 

CPS = (1-CPL-CPP)*(1-CPR) 

ddist = 0.005*MaxStemb 

DVS = if stemp<TFLOW then STEMP/TFLOW ELSE 1+((STEMP-TFLOW)/(TMAT-TFLOW)) 

FST = 0.05 

k = 0.6 

LAI = LeafB*SLA 

Maxtil = 900 

PartLS = PartL+PartS 

RAD = 17 

RRMAT = 0.3 

RUE = 1.2 

STW = 20 

TBASE = 8 
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TFLOW = 1500 

TMAT = 2000 

TMAX = 30 

TMIN = 24 

Totil = VTIL+REPTIL 

CPPL = GRAPH(DVS) 

(0.00, 0.55), (0.1, 0.536), (0.2, 0.521), (0.3, 0.507), (0.4, 0.493), (0.5, 0.479), (0.6, 0.464), (0.7, 0.45), 

(0.8, 0.3), (0.9, 0.15), (1, 0.00), (1.10, 0.00), (1.20, 0.00), (1.30, 0.00), (1.40, 0.00), (1.50, 0.00), (1.60, 

0.00), (1.70, 0.00), (1.80, 0.00), (1.90, 0.00), (2.00, 0.00) 

CPPP = GRAPH(DVS) 

(0.00, 0.00), (0.05, 0.00), (0.1, 0.00), (0.15, 0.00), (0.2, 0.00), (0.25, 0.00), (0.3, 0.00), (0.35, 0.00), 

(0.4, 0.00), (0.45, 0.00), (0.5, 0.00), (0.55, 0.00), (0.6, 0.00), (0.65, 0.00), (0.7, 0.00), (0.75, 0.00), (0.8, 

0.143), (0.85, 0.286), (0.9, 0.429), (0.95, 0.571), (1.00, 0.714), (1.05, 0.857), (1.10, 1.00), (1.15, 1.00), 

(1.20, 1.00), (1.25, 1.00), (1.30, 1.00), (1.35, 1.00), (1.40, 1.00), (1.45, 1.00), (1.50, 1.00), (1.55, 1.00), 

(1.60, 1.00), (1.65, 1.00), (1.70, 1.00), (1.75, 1.00), (1.80, 1.00), (1.85, 1.00), (1.90, 1.00), (1.95, 1.00), 

(2.00, 1.00) 

CPR = GRAPH(DVS) 

(0.00, 0.3), (0.1, 0.263), (0.2, 0.225), (0.3, 0.188), (0.4, 0.15), (0.5, 0.112), (0.6, 0.075), (0.7, 0.038), 

(0.8, 0.00), (0.9, 0.00), (1, 0.00), (1.10, 0.00), (1.20, 0.00), (1.30, 0.00), (1.40, 0.00), (1.50, 0.00), 

(1.60, 0.00), (1.70, 0.00), (1.80, 0.00), (1.90, 0.00), (2.00, 0.00) 

DVE = GRAPH(DVS) 

(0.00, 1.00), (0.4, 1.00), (0.8, 0.00), (1.20, 0.00), (1.60, 0.00), (2.00, 0.00) 

rrmort = GRAPH(DVS) 

(0.00, 0.00), (0.1, 0.00), (0.2, 0.00), (0.3, 0.00), (0.4, 0.00), (0.5, 0.02), (0.6, 0.02), (0.7, 0.02), (0.8, 

0.02), (0.9, 0.02), (1, 0.00), (1.10, 0.00), (1.20, 0.00), (1.30, 0.00), (1.40, 0.00), (1.50, 0.00), (1.60, 

0.00), (1.70, 0.00), (1.80, 0.00), (1.90, 0.00), (2.00, 0.00) 

rrsen = GRAPH(DVS) 

(0.00, 0.00), (0.1, 0.00), (0.2, 0.00), (0.3, 0.00), (0.4, 0.00), (0.5, 0.00), (0.6, 0.00), (0.7, 0.00), (0.8, 

0.00), (0.9, 0.00), (1, 0.00), (1.10, 0.013), (1.20, 0.026), (1.30, 0.04), (1.40, 0.04), (1.50, 0.04), (1.60, 

0.04), (1.70, 0.04), (1.80, 0.04), (1.90, 0.04), (2.00, 0.04) 

SLA = GRAPH(DVS) 

(0.00, 0.037), (1.00, 0.018), (2.00, 0.017) 
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Chapter 8. Modeling Yield Losses Due to Pests - The GENEPEST Structure 

 

The analysis and modeling of crop losses is central to plant protection in general, and to plant 

pathology, in particular: no plant protection scientific reasoning could possibly exist without a measure 

of crop losses (Chiarappa, 1971; Rabbinge et al., 1989; Savary et al., 2006; Teng, 1987; Zadoks, 1985; 

Zadoks and Schein, 1979). In many ways, the applied side of phytopathology, as a science, would thus 

not exist if crop losses to diseases did not occur. Ironically, the information on crop loss is scarce for a 

number of reasons we shall not elaborate here. Simulation modeling is one approach to complement 

the existing data, upscale them, and project ourselves in future environmental, social, and technical 

scenarios. However, this is only possible if reliable field data are available in sufficient number to 

assess the outputs of models ― simulation outputs cannot be seen per se as substitute for measured 

realities. This latter point cannot be addressed here despite its critical importance. 

This chapter introduces the effects of pests (pathogens, but also animal pests, and weeds) on 

crop growth and how they can be incorporated into crop growth simulation models in order to model 

yield losses. Crop losses, or more specifically yield losses, occur because the physiology of the 

growing crop is negatively affected by pests in a dynamic way over time as crop both grows (i.e., 

increases in biomass) and develops (i.e., passes through the different stages of its physiological 

development). As a necessary first step to achieve the modeling of yield losses we therefore need to 

introduce concepts that are related to yield levels and damage mechanisms because they represent the 

conceptual basis of modeling yield losses. The effects of pests on crop growth using the so called 

"radiation interception - radiation use" (RI-RUE) framework discussed in the previous chapter will 

then be addressed again. Lastly, the implementation of damage mechanisms into a crop growth model 

will be presented and illustrated. 

Developing simulation models that integrate the dynamic effects of damage mechanisms of 

injuries caused by pests, and their translation into yield reduction can provide several types of 

outcomes, both scientific and practical. Note that, because we deal with (physiological) damage 

mechanisms on the growing crop, the focus is not on the pathogens (pests) themselves, but the injuries 

each pathogen (pest) may cause: one pathogen (pest) may cause one or several (and quite different) 

injuries.  

Such models enable, for instance, one to gain: 

 A better understanding of processes involved in the attrition of crop growth and yield caused by 

pest injuries; this is the heuristic value of (simple) simulation models. In that case, the system's 
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behavior is analyzed and allows pinpointing knowledge gaps and deriving hypotheses on the 

system's functioning. 

 A better view of the respective importance of pests, with respect to the yield losses they can 

cause: simulation of yield losses caused by one injury in isolation, versus a combination of 

injuries, and their respective contribution to yield loss, allows ranking of individual diseases 

(pests) according to the yield losses they cause (or might cause under pre-set scenarios). 

 A prospective view of yet-to-achieve progress in disease (pest) management. Simulation of 

yield gained from improved management tools or strategies provides a formal and quantitative 

basis for strategic decisions in pest management, including setting research priorities. This 

applies, in particular, but not solely, to plant breeding, where research efforts are both long and 

expensive. One can also think of policy applications for better natural resource use and 

conservation, improvement of production situations, or landscape management. 

 

Important note: crop loss models as presented here therefore do not simulate the dynamics of 

epidemics (or of pests, in general), but the dynamics of yield build-up (with or without injuries). As 

you will see in this chapter, modeling of damage mechanisms and yield losses entails processes (and 

therefore involves model structures) that are directly connected to the growing crop. As a result, the 

emphasis in modeling yield losses presented here is completely different from the standpoint used in 

addressing the modeling of epidemics (described in Chapters 4, 5 and 6 of this module). The crop loss 

modeling approach in this chapter is instead a direct application of Chapter 7. 

 

This chapter describes concepts used for yield loss modeling, and illustrates how these concepts 

can be implemented when developing a simulation model for yield loss. Such an approach has been 

applied to a number of crop pests, for example in the case of groundnut rust and leaf spots (Savary et 

al., 1990; Savary and Zadoks, 1992), multiple pests of potato (Johnson, 1992), rice leaf blast 

(Bastiaans, 1993), virus diseases (Madden et al., 2000), multiple pests of rice (Willocquet et al., 2000) 

and multiple pests of wheat (Willocquet et al., 2008).  

 

Concepts and definitions related to yield levels, production situations and injuries  

The concept of yield levels (potential, attainable, actual) and the factors which determine them 

(Chiarappa, 1971; Zadoks and Schein, 1979; Rabbinge et al., 1989; Rabbinge, 1993) provides a 

framework which has been, and still is, largely used to address the performances of agrosystems from 
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the biophysical and socio-economical points of view (van Ittersum and Rabbinge, 1997). Fig. 8.1 

provides an overview of yield levels and the factors which determine them. 

 

 

Figure 8.1. Relationships among potential, attainable and actual yields and growth-defining, 

growth limiting and growth-reducing factors (Rabbinge, 1993; van Ittersum and Rabbinge, 

1997). 

 

The potential yield (Yp) of a crop is determined by defining factors: radiation, temperature, 

and morphological and physiological attributes determined by the genotype of the crop. The potential 

yield thus corresponds to the yield that would be produced by a crop grown under optimum conditions. 

The attainable yield (Ya) is determined by the defining factors in combination with limiting 

factors: water and nutrients. The attainable yield corresponds also to the yield that would be produced 

by a crop when free of injuries. 

The combination of yield defining and yield limiting factors can be embedded in the concept of 

production situation (de Wit and Penning de Vries, 1982; Savary and Zadoks, 1992; Rabbinge et al., 

1993). The attainable yield of a given crop thus corresponds to the production situation under which 

this crop is grown. 

The attainable yield can be reduced by the effect of reducing factors such as pest (disease, 

insects, weeds) injuries. An injury is a visible, measurable symptom caused by a harmful organism 

(Zadoks, 1985). 
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The resulting yield, obtained in a crop that has been injured by one or several pests, is defined 

as the actual yield, Y (Rabbinge, 1993): the actual yield, therefore, is the crop yield actually harvested 

in a farmer’s field. 

Yield loss (YL), or damage (Zadoks, 1985), represents the difference between the attainable 

and the actual yield; that is, the yield lost from pests’ injuries. Yield loss can be associated to 

individual pests as well as to multiple pests. The functional relationships between production situation, 

attainable and actual yields, yield losses and injuries are summarized in Fig. 8.2. 

Yield loss is frequently expressed as the fraction (percentage) of the attainable yield lost to pest 

injuries. It is then called relative yield loss (RYL), and is computed as: RYL = 100 × [(Ya – Y) / Ya]. 

The relationship between injury levels and the yield loss they cause is one important 

quantitative component analyzed when addressing yield losses. This relationship is called a damage 

function. 

 

 

Figure 8.2. Relationships between production situation (PS), attainable yield (Ya), and actual 

yield (Y); yield loss (YL) (Willocquet et al., 1998). 

 

Production situations may correspond to varying levels of attainable and actual yields, as 

illustrated in Fig. 8.3. For example: 

 two different production situations (i.e., combinations of yield-defining and yield-limiting 

factors) may correspond to the same level of Ya, but to different levels of yield losses (i.e., 

different combinations of pest injuries), and therefore to different actual yields (PS1 and PS2); 

 two production situations may correspond to different levels of Ya, but to the same level of 

actual yield (because yield losses are different: PS2 and PS3); 
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 two production situations may correspond to different levels of Ya and actual yield (PS3 and 

PS4), the ranking of yield levels between the two production situations being the same (YaPS3 > 

YaPS4 and YPS3 > YPS4); 

 two production situations may correspond to different levels of Ya and actual yield (PS4 and 

PS5), the ranking of yield levels between the two production situations being opposite (YaPS4 > 

YaPS5 and YPS4 < YPS5). 

This diversity of possibilities implies that the quantification of the relative role of the different factors 

determining the actual yield is a first step when aiming at improving agrosystems' performance. 

 

 

Figure 8.3. An illustration of yield levels in a range of production situations.The concept of 

damage mechanisms 

 

The concept of damage mechanisms 

Damage functions, which quantify the relationships between injuries and yield losses (Zadoks, 

1985), can be determined experimentally. They can also be determined from crop loss simulation 

models, because, as processes, the damage functions represent processes that are underpinned by sub-

processes: damage mechanisms (DM). In these models, the processes involved in plant growth are 

represented, as well as DMs. Damage mechanisms refer to the processes involved in crop growth that 
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are affected by a harmful agent. Different mechanisms can be described (Rabbinge and Rijsdijk, 1981; 

Boote et al., 1983). The main categories of DMs are listed in Table 8.1. 

 

Table 8.1. Damage mechanisms of crop pest injuriesa 

Damage 

mechanism 

Physiological effect Effect in a crop 

growth model 

Examples of pests

Light stealer Reduces the 

intercepted radiation 

Reduces the green LAI Pathogens producing 

lesions on leaves 

Leaf senescence 

accelerator 

Increases leaf 

senescence, causes 

defoliation 

Reduces the biomass of 

leaves by increasing the 

rate of leaf senescence 

Foliar pathogens such as 

leaf-spotting pathogens, 

downy mildews 

Tissue consumer Reduces the tissue 

biomass 

Outflows from 

biomasses of the 

injured organs 

Defoliating insects

Stand reducer Reduces the number 

and biomass of plants 

Reduces biomass of all 

organs 

Damping-off fungi

Photosynthetic rate 

reducer 

Reduces the rate of 

carbon uptake 

Reduces the RUE Viruses, root-infecting 

pests, stem-infecting pests, 

some foliar pathogens 

Turgor reducer Disrupts xylem and 

phloem transport 

Reduces the RUE, 

accelerates leaf 

senescence 

Vascular, wilt pathogens

Assimilate sapper Removes soluble 

assimilates from host 

Outflows assimilates 

from the pool of 

assimilates 

Sucking insects, e.g. 

aphids, some planthoppers, 

biotrophic fungi exporting 

assimilates from host cells 
a Derived from Rabbinge and Vereyken (1980), Rabbinge and Rijsdijk (1981) and Boote et al. (1983). 

 

Damage mechanisms have been experimentally measured for many pests, for example on 

groundnut rust (Savary et al., 1990), rice leaf blast (Bastiaans, 1991), bean diseases (Bassanezi et al., 

2001; Lopes et al., 2001), and wheat Septoria tritici blotch (Robert et al., 2006). Such quantification 

allows a better understanding of the underlying mechanisms of the effects of pests on crop growth. 

127



 

The use of DM parameters can serve at least three purposes: 

 DMs can be incorporated into models simulating components of crop growth, e.g., canopy 

photosynthesis (Bastiaans and Kropff, 1993), and assimilate partitioning (Bancal et al., 2012). 

 DMs can be incorporated in crop growth simulation models in order to simulate their effect of 

crop growth and yield. How to implement this will be described in section 8.4, and examples 

from the literature are given in the introduction of this chapter.  

 parameters for DMs can also be used to compare host plant resistance levels amongst 

genotypes of a given crop (e.g., Bastiaans and Roumen, 1993). 

The use of damage mechanism parameters illustrates again one important characteristic of 

mechanistic simulation modeling, that is, the mobilization of parameters that have been acquired 

experimentally. Therefore, there is no disconnection, but, to the contrary, a complete loop from 

experimental data to model (parameters) and from model to experiments (experimentally measured 

system's response). 

 

The effects of pests on crop growth using the RI-RUE framework 

 The damage mechanisms described above can be linked to the RI-RUE concepts described in 

the previous chapter. Johnson (1987) grouped damage mechanisms in two broad categories, according 

to their major effect on RI (the first four damage mechanisms: light stealers, leaf senescence 

accelerators, tissue consumers, and stand reducers) and RUE (the last three damage mechanisms: 

photosynthetic rate reducer, turgor reducers, and assimilate sappers). 

 

Figure 8.4. Types of damage functions corresponding to RI-reducing and RUE-reducing pests 

(derived from Johnson, 1987). 
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 Using a potato crop growth simulation model including damage mechanisms for several pests, 

Johnson (1987) exemplified the effects of injuries on yield losses according to their yield-reducing 

effects (through a reduction of RI or of RUE; Fig. 8.4). 

 Because of Beer's law relationship between LAI and RI, a pest reducing the LAI will have a small 

reducing effect on yield at low pest intensity. On the other hand, RUE-reducing pests will have a large 

effect even at low pest intensity, and this effect will decrease (relatively) as pest intensity (and injury) 

increases. 

Grouping pests according to their effects on RI and RUE may be useful for crop loss 

assessment and disease (pest) management. Analyzing these relationships (damage function, damage 

mechanism, RI-RUE-reducing effect) allows one to: 

(1) address this type of research question in a synthetic way, while  

(2) still accounting for the underlying biological mechanisms. 

These underlying mechanisms involve questions pertaining to (1) the impact of pests on yield 

losses, (2) the injury thresholds for pest management, and (3) multiple-pest systems (Johnson, 1987). 

This approach has been used to analyze many, diverse, pathosystems. It remains very appealing when 

analyzing interactions between pests, yield, and production situations (Savary et al., 2006). The 

simplicity of the framework may provide an appealing way for analyses incorporating other factors, 

e.g., decision making or incorporating other species such as antagonists. 

 

A simple crop growth simulation model for actual growth and yield, and yield losses – GENEPEST 
 
Stages to simulate yield losses, and possible outcomes 

Simulation of crop growth and yield affected by pest injuries can be made by incorporating into 

a crop growth model (such as GENECROP) the damage mechanisms corresponding to the injuries 

addressed. We shall call this new model GENEPEST. A complete listing of the program can be found 

in Appendix 8.1. 

A three-stage approach then allows the simulation of yield losses:  

1. Simulation of non-injured growth, enabling one to model the attainable growth and 

attainable yield (Ya) of a crop under a given production situation. By definition, all injury 

levels are then set to zero. 

2. Simulation of growth under specified levels of injuries in order to model the actual growth 

and actual yield (Y). 

3. Computation of yield losses, that is, the difference between simulated attainable and actual 

yields. 
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Note 1. Simulating growth and yield with levels of injuries corresponding to improved pest 

management (Ym) allows estimating yield that would be gained on the actual yield (Y) from this 

improvement in pest management (Ym-Y), thus providing a basis to guide strategic decisions such as 

research priorities in pest management. 

Note 2. Yield losses can be simulated for a range of production situations, by setting the crop drivers 

(i.e., parameters and interpolation functions for crop growth) to values corresponding to each 

production situation, and proceeding to the three stages described above. 

Note 3. Yield losses can be simulated for injuries considered individually and for combinations of 

injuries (i.e., grouped as pre-defined injury profiles), thus allowing ranking injuries according to their 

importance in terms of the yield losses they cause. Such results can help in ranking crop health 

problems and, again, help for guiding research priorities in pest management. 

 

Incorporating damage mechanisms into a crop growth model 

The damage mechanisms given in Table 8.1 can be incorporated in the crop growth model, 

GENECROP described in the previous chapter, leading to the GENEPEST model (Fig. 8.5). 

 

 

Figure 8.5. GENEPEST: general structure of a crop growth model incorporating damage 

mechanisms from pest injuries. 
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Stand reducers are not included in Fig 8.5 in order to avoid crowding the diagram. Stand 

reducers would affect the biomass of all organs, and would be reflected by rates of reduction of 

biomass for all for organs. 

Fig. 8.5 indicates that:  

(1) all damage mechanisms can be accounted for in GENEPEST,  

(2) the different damage mechanisms correspond in general to effects on different processes 

(rates) or on different variables,  

(3) different damage mechanisms however can affect the same process (i.e., leaf consumers and 

leaf senescence accelerators cause a reduction in [green] leaf biomass, and  

(4) a damage mechanism can affect more than one process or variable, as in the case of turgor 

reducers. 

Damage mechanisms are now considered with examples from varying pests in order to illustrate how 

damage mechanisms can be coupled to a crop growth model. 

 

Light stealers 

Light stealers decrease the area of green LAI. This typically corresponds to leaf diseases. Thus, 

equation (7.6) in Chapter 7:  

 

ttt LEAFBSLALAI       (7.6) 

 

 becomes, for one leaf disease, LD1: 

 

tLDttt RFLEAFBSLALAI 1     (8.1) 

 

where RF stands for the 'Reduction Factor' associated to the injury caused by leaf disease 1. 

Note that this reduction factor is dynamic, as indicated by the t index. In the case of a foliar disease, 

which produces lesions that decrease the green LAI, equation (8.1) can be simply written as: 

 

 tLDttt xLEAFBSLALAI 11     (8.2) 
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where xLD1t is the disease severity of LD1 (i.e., the fraction of leaves covered by lesions varying 

between 0 and 1) at time t. Equation (8.1) reflects the decrease in (green) LAI caused by disease, which 

corresponds to the leaf area covered by lesions and not photosynthesizing any more. Again, the 

reduction in LAI is dynamic, as disease severity can be made to vary over the course of an epidemic. 

If we consider three leaf diseases LD1, LD2, LD3, equation (8.2) becomes: 

 

     tLDtLDtLDttt xxxLEAFBSLALAI 321 111  .   (8.3) 

 

The underlying hypotheses of this equation are that (1) decreases in LAI can be due to one disease only 

(overlapping of lesions from two different diseases will reduce the LAI only once), and (2) the three 

diseases are randomly distributed in the crop canopy. 

 

Leaf senescence accelerators and tissue (leaf) consumers 

Leaf senescence accelerators and leaf consumers generally refer to different pests, the former 

typically corresponding to pathogens, and the second to insect defoliators. From a modeling point of 

view, they are however handled together and in the same manner here, because they correspond to the 

same effect on crop growth, i.e., a reduction in leaf dry biomass. The incorporation of these effects into 

the model is first described in the case of leaf senescence accelerators and then in the case of leaf 

consumers. 

Leaf senescence accelerators have the same physiological effect as physiological senescence, 

and are therefore accounted for in the crop growth model in the same way as physiological senescence. 

So, equation 7.18 in Chapter 7: 

 

  tRSENLPARTLLEAFBLEAFB ttttt     (7.18) 

 

becomes: 

 

  tRSENINRSENLPARTLLEAFBLEAFB tttttt  1   (8.4) 

 

where RSENIN1t is the rate of leaf senescence caused by injury. It is convenient to establish a 

relationship between RSENIN1 and injury level by expressing this rate of senescence as the product of 

a relative rate of senescence by the leaf dry biomass: 
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ttt LEAFBRRSENINRSENIN  11           (8.5) 

with: 

tt INalphaRRSENIN 11       (8.6) 

 

Equations (8.5) and (8.6) simply mean that in the case of leaf senescence caused by an injury, 

the fraction of leaf senesced is proportional to the intensity of the injury. Injury can be expressed as 

disease severity (i.e., a fraction between 0 and 1). The magnitude of the effect of injury on senescence 

corresponds to the parameter alpha, which needs to be measured experimentally. 

 

An important example of tissue consumers is the case of defoliating insects, which decrease the 

leaf biomass by eating leaves or fractions of leaves. This type of damage mechanism can be reflected 

in equation (7.18) by reducing the leaf biomass as a result of consumption by defoliating insects: 

 

  tRDEFRSENLPARTLLEAFBLEAFB tttttt     (8.7) 

 

where RDEFt is the rate of defoliation. In the same way as for senescence accelerators, a relationship 

can be established between the rate of defoliation and the injury: 

 

ttt LEAFBRFDEFRDEF       (8.8) 

 

with RFDEFt is the rate of increase in fraction of leaf area damaged by defoliation. This rate can be 

derived from successive assessments of the fraction of leaf area defoliated.  

When combining effects of senescence accelerators and leaf consumers, the following 

hypothesis is made: leaf consumers do not damage leaf tissues that are senesced, and leaf senescence 

cannot occur on defoliated parts of leaves. The combined effects of these two damages are therefore 

additive and can be written as: 

 

  tRDEFRSENINRSENLPARTLLEAFBLEAFB ttttttt  1         (8.9) 
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Photosynthetic rate reducers 

Photosynthetic rate reducers can be incorporated in a crop growth model such as GENECROP 

(chapter 7) by decreasing the RUE. In crop growth models describing in more detail the photosynthesis 

processes, the effect of photosynthetic rate reducers would be reflected by a reduction in, for example, 

the initial light use efficiency of single leaves, and/or a reduction in the maximum rate of 

photosynthesis, and/or an increase in dark respiration (e.g., Rossing et al., 1992). 

In GENECROP, equation 7.5 in Chapter 7: 

 

 tLAIk
ttt eRADRUERG  1     (7.5) 

 

becomes:     

 

  tPR
LAIk

ttt RFeRADRUERG t
11      (8.10) 

 

In the case of light stealers such as (leaf-spotting) foliar diseases, the relationship between the 

reduction factor and the level of injury is straightforward: the reduction in green LAI corresponds to 

disease severity and RF =1 - x = 1 - severity. 

 When addressing photosynthetic rate reducers, the relationship between the reduction factor 

and the level of injury is less straightforward, and often needs to be established experimentally. Two 

examples corresponding to pests which widely differ biologically (a viral disease and a root-infecting 

disease), but nevertheless cause similar damage mechanisms by reducing the RUE, are given below to 

illustrate how RF can be expressed. 

 Viral diseases are in general systemic and the virus particles are transported within the plant via 

its vascular system. Virus infection can reduce the rate of photosynthesis and this can be simply 

represented by the relationship between the proportion of disease plants and the reduction factor: 

  

 ttPR VIRdeltaRF 11      (8.11) 

 

where delta is a parameter ranging between 0 and 1, which represents the magnitude in the effect of 

viral infection to reduce the RUE, and VIRt is the proportion of diseased plants. The parameter delta 

needs to be measured with specific experiments. 
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 Root-infecting diseases cause injuries, which directly affect the functioning of infected roots, 

and therefore the amount of water and nutrients absorbed by the roots. This in turn causes a reduction 

in RUE. A relationship between the disease level and RF can be written as:  

  

 ttPR RDISgammaRF  12     (8.12) 

 

where, similarly to equation (8.11), gamma is a parameter ranging between zero and 1, which 

represents the magnitude in the effect of root infection to reduce the RUE, and RDISt is the proportion 

of roots infected by the pathogen. The parameter gamma needs to be measured with specific 

experiments. 

Accounting for the combined effects of the two above pests can be done by multiplying the 

reduction factors, which reflects (1) the interactions between both pests in their effect on RUE and (2) 

the hypothesis of random distribution of both pests. Equation (8.10) becomes: 

 

  tPRtPR
LAIk

ttt RFRFeRADRUERG t
211            (8.13) 

 

Assimilate sappers 

Assimilate sappers uptake assimilates produced from photosynthesis. Two important pest 

groups cause this type of damage mechanism: insects such as aphids or plant hoppers which are 

feeding from the phloem sap, and biotrophic fungi such as rusts which are diverting the assimilates to 

produce fungal organs, especially spores. One could also add a number of plant nematodes, at least 

those which do not cause tissue necrosis. 

The diversion of assimilates is accounted for in the simulation of the dynamics of the pool of 

assimilates. Equation (7.16) from Chapter 7: 

 

  tPARTSOPARTRPARTSPARTLRGPOOLPOOL tttttttt    (7.16) 

 

becomes:  

 

  tDIVPARTSOPARTRPARTSPARTLRGPOOLPOOL ttttttttt   (8.14) 
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The amount of assimilates diverted by pests is retrieved from the amount of assimilates 

partitioned towards organs, and equations (7.12) to (7.15) in Chapter 7 become: 

 

   ttttt CPRCPLDIVPOOLPARTL  1        (8.15) 

   ttttt CPRCPSDIVPOOLPARTS  1        (8.16) 

  tttt CPRDIVPOOLPARTR           (8.17) 

   ttttt CPRCPSODIVPOOLPARTSO  1         (8.18) 

 

Again, a relationship needs to be established experimentally between the amount of assimilates 

diverted by the pest and the level of injury. In the case of insects, this corresponds to the sapping (or 

sucking) rate, and can depend on the crop development stage and the insect development stage (or 

weight). The diversion rate can be written as: 

 

 tttt NBINSbmperinsrrsapDIVINS      (8.19) 

 

where DIVINSt is the (daily) assimilate diversion rate, rrsapt is the relative rate of sapping (per biomass 

of insect and per day), bmperinst is the biomass of an individual insect, and NBINSt is the number of 

insects (per m2), rrspapt and bmperinst need to be experimentally measured and may vary over time, 

and NBINSt is the insect pest driving function, which may vary over time, and represents the dynamics 

of insect density. 

In the case of biotrophic fungi, the relationships between disease intensity and the diversion of 

assimilates can be done according to the carbohydrate uptake for spore production, the number of 

spores produced per lesion per day, and the lesion size: 

 

 tt NBLESrruptakeDIVBIOT         (8.20) 

 

with: 

 

lesize

SEVBIOTLAI
NBLES tt

t


      (8.21) 
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where rruptake is the rate of carbohydrate uptake per lesion per day; and the number of lesions is 

derived from disease severity, SEVBIOTt (pest driver), lesion area (lesize), and LAI. 

When combining the two above pests, a simple hypothesis corresponds to the independence 

between both pests and their injuries, leading equation (8.14) to become: 

 

  tDIVBIOTDIVINSPARTSOPARTRPARTSPARTLRGPOOLPOOL tttttttttt   

(8.22) 

 

and replacing POOLt - DIVt by POOLt - DIVINSt - DIVBIOTt in equations (8.15) to (8.18). 

 

Turgor reducer 

Damage mechanisms associated with turgor reducers have been addressed when considering 

RUE reducers and leaf senescence accelerators. They will therefore not be illustrated specifically in 

this chapter. Accounting for turgor reducers will however be illustrated in the next chapter.  

 

Important note: for the sake of simplicity, the incorporation of damage mechanisms into a crop 

growth simulation model has been described above for each damage mechanism, one at a time. 

Individual crop pests can, however, cause more than one type of damage. This will be illustrated in 

the GENEPEST model, and in the description of RICEPEST and WHEATPEST models in the next 

chapter. 

 

Model parameters for damage mechanisms 

The parameters needed to simulate damage mechanisms are derived from experiments. Two 

main types of parameters can be considered: 

(1) parameters which represent the magnitude of the impact of pest injuries on the crop 

physiological processes:  

alpha (leaf senescence accelerator); 

delta (virus disease – effect on RUE); 

gamma (root-infecting disease – effect on RUE); 

rrsap (insect sapper – rate of sapping); and 

rruptake (biotrophic pathogen – rate of assimilate uptake). 

(2) parameters corresponding to ecological characteristics of the pests, which are needed to 

determine a relationship between the damage mechanism and the level of injury: 
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bmperins (biomass of an individual insect); and 

lesize (area of a lesion). 

 
The following values are set in GENEPEST (again, these have to be experimentally measured 

for a given pest). 

alpha = 0.076 day-1 (case of rice sheath blight; Willocquet et al., 2000) 

delta = 0.35 (case of wheat BYDV; Willocquet et al., 2008) 

gamma  = 1 (case of wheat take-all; Willocquet et al., 2008) 

rrsap = 1 mg·mg-1· day-1 (arbitrarily chosen value) 

rruptake = 4.62 × 10-6 day-1 (case of wheat brown or leaf rust; Willocquet et al., 2008) 

bmperins = 0.5 mg (arbitrarily chosen value) 

lesize = 10-6 m2 (case of wheat brown or leaf rust; Willocquet et al., 2008) 

 
Model drivers for pests injuries 

The damage mechanisms described above have been implemented into GENEPEST by 

considering several pests, which provide a combination of the damage mechanisms described 

previously. The pests considered are described in Table 8.2. 

 
Table 8.2. Examples of pests accounted for in GENEPESTa 

Pest name Pest type Driving function Damage mechanism 1 Damage mechanism 2

LD1 Foliar pathogen Disease severity 

(fraction leaf area 

infected) 

light stealer  

LD2 Foliar pathogen light stealer leaf senescence 

accelerator 

LD3 Foliar pathogen light stealer assimilate sapper

VIR Virus Disease incidence 

(fraction plants 

infected) 

photosynthetic rate 

reducer 

 

DEF Defoliating 

insect 

Daily fraction of leaf 

area defoliated 

tissue (leaf) consumer  

RDIS Root-infecting 

pathogen 

Disease severity 

(fraction root 

infected) 

photosynthetic rate 

reducer 

 

NBINS Sucking insect Nb of insects (per m2) assimilate sapper  
a Weeds can also accounted for in a simplified manner, see Chapter 9. 
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Simulations 

The STELLA model GENEPEST.STMX will allow you to: 

 explore the model structure and equations,  

 explore the model inputs, especially the driving functions of the different pests included 

 explore the model outputs, and  

 run the model with varying levels of injury, which will allow you to explore: 

 the effects of individual injuries on crop growth and yield 

 the effects of combined injuries on crop growth and yield 

 

Summary 

This chapter describes: 

 Concepts and definitions related to yield levels, production situations and injuries 

 The concept of damage mechanism 

 The effects of pests on crop growth within the RI-RUE framework 

 How damage mechanisms are captured in a quantitative and dynamic way into a generic 

simulation model, GENEPEST. 

 Provides the equations, parameters, and flowchart of GENEPEST. 

 Includes the STELLA file, which can be used to explore the model structure and the effect of 

injuries, individually or in combination, on the simulated dynamics of crop growth. 
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Exercises and questions 

1. Give examples of pests in wheat categorized by damage mechanism, following Table 8.1. 

 

2. Indicate which of the following statement is (are) correct 

a. yield loss is the difference between attainable and actual yield 

b. yield loss is the difference between potential and attainable yield 

c. a yield reducing factor may be associated to different injury mechanisms 

d. a given damage mechanism can affect different physiological processes 

 

3. A light stealer affects 

a. the RUE 

b. the partitioning towards organs 

c. the leaf biomass 

d. the LAI 

 

4. Acceleration of leaf senescence affects 

a. the RUE 

b. the partitioning towards organs 

c. the leaf biomass 

d. the LAI 

 

5. A possible unit for the relative rate of leaf senescence is 

a. g·g-1·day-1 

b. g·day-1 

c. g·g-1 

d. g·m-2·day-1 

 

Answers to exercises and questions 

1. pests by damage mechanism in wheat: 

b. light stealer: weeds, Septoria blotch; 

c. leaf senescence accelerator: Septoria blotch; 

d. tissue consumer: many defoliating insects (e.g., Lema spp.); 
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e. stand reducer: many soil pathogens: take-all pathogen (e.g., Gaeumannomyces tritici); weeds; 

barley yellow dwarf virus disease; 

f. photosynthetic rate reducer: barley yellow dwarf virus disease; Septoria blotch; 

g. turgor reducer: eyespot pathogen (Rhizoctonia spp.); 

h. Assimilate sappers: rust pathogens (stripe [yellow], leaf [brown], and stem rust); aphids. 

 

2. a: yield loss is the difference between attainable and actual yield, and c: a yield reducing factor may 

be associated to different injury mechanisms 

 

3. a: the LAI.  

 

4. c: the leaf area biomass 

 

5. a: g·g-1·day-1. 

 

Appendix 8.1. Program listing of GENEPEST 

 

LeafB(t) = LeafB(t - dt) + (PartL - RSenL) * dt 

INIT LeafB = 10 

INFLOWS: 

PartL = CPL*(Pool-rdiv) 

OUTFLOWS: 

RSenL = ((rrsen+(alpha*LD2)+RFDEF)*LeafB) 

MaxStemb(t) = MaxStemb(t - dt) + (rmaxstemb) * dt 

INIT MaxStemb = 6 

INFLOWS: 

rmaxstemb = PartS 

Pool(t) = Pool(t - dt) + (RGrowth - PartS - PartL - PartO - PartR - rdiv) * dt 

INIT Pool = 0 

INFLOWS: 

RGrowth = RAD*RUE*(1-EXP(-k*LAI))*(1-(delta*VIR))*(1-(gamma*RDIS)) 

OUTFLOWS: 

PartS = CPS*(Pool-rdiv) 
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PartL = CPL*(Pool-rdiv) 

PartO = CPO*(Pool-rdiv) 

PartR = CPR*(Pool-rdiv) 

rdiv = (rsrsap*bmperins*INS)+(rruptake*LAI*LD3/lesize) 

REPTIL(t) = REPTIL(t - dt) + (Rmat - Rmortr) * dt 

INIT REPTIL = 0 

INFLOWS: 

Rmat = if DVS<0.8 or DVS>1 then 0 else if VTIL<FST*Totil then 0 else RRMAT*VTIL 

OUTFLOWS: 

Rmortr = rrmort*REPTIL 

RootB(t) = RootB(t - dt) + (PartR) * dt 

INIT RootB = 5 

INFLOWS: 

PartR = CPR*(Pool-rdiv) 

StemB(t) = StemB(t - dt) + (PartS - RTransloc) * dt 

INIT StemB = 6 

INFLOWS: 

PartS = CPS*(Pool-rdiv) 

OUTFLOWS: 

RTransloc = IF(DVS>1) then ddist else 0 

STEMP(t) = STEMP(t - dt) + (Dtemp) * dt 

INIT STEMP = 320 

INFLOWS: 

Dtemp = ((TMAX+TMIN)/2)-TBASE 

StorB(t) = StorB(t - dt) + (PartO + RTransloc) * dt 

INIT StorB = 0 

INFLOWS: 

PartO = CPO*(Pool-rdiv) 

RTransloc = IF(DVS>1) then ddist else 0 

VTIL(t) = VTIL(t - dt) + (Rtil - Rmat - Rmrtv) * dt 

INIT VTIL = 250 

INFLOWS: 

Rtil = PartLS*STW*(1-(VTIL/maxtil))*DVE 
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OUTFLOWS: 

Rmat = if DVS<0.8 or DVS>1 then 0 else if VTIL<FST*Totil then 0 else RRMAT*VTIL 

Rmrtv = (rrmort*VTIL) 

alpha = 0.076 

bmperins = 0.0005 

CPL = CPPL*(1-CPR) 

CPO = CPPO*(1-CPR) 

CPS = (1-CPL-CPO)*(1-CPR) 

DACE = TIME+14 

ddist = 0.005*MaxStemb 

delta = 0.35 

DVS = if stemp<TFLOW then STEMP/TFLOW ELSE 1+((STEMP-TFLOW)/(TMAT-TFLOW)) 

FST = 0.05 

gamma = 1 

grain__yield = 0.85*StorB 

INS = pINS*INSn 

k = 0.6 

LAI = LeafB*SLA*(1-LD1)*(1-LD2)*(1-LD3) 

LD1 = pLD1*LD1n 

LD2 = pLD2*LD2n 

LD3 = pLD3*LD3n 

lesize = 0.000001 

maxtil = 900 

PartLS = PartL+PartS 

pINS = 0 

pLD1 = 0 

pLD2 = 0 

pLD3 = 0 

pRDIS = 0 

pRFDEF = 0 

pVIR = 0 

RAD = 17 

RDIS = pRDIS*RDISn 
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RFDEF = pRFDEF*RFDEFn 

RRMAT = 0.3 

rruptake = 0.00000462 

rsrsap = 1 

RUE = 1.2 

STW = 20 

TBASE = 8 

TFLOW = 1500 

TMAT = 2000 

TMAX = 30 

TMIN = 24 

Totil = VTIL+REPTIL 

VIR = pVIR*VIRn 

CPPL = GRAPH(DVS) 

(0.00, 0.55), (0.1, 0.536), (0.2, 0.521), (0.3, 0.507), (0.4, 0.493), (0.5, 0.479), (0.6, 0.464), (0.7, 0.45), 

(0.8, 0.3), (0.9, 0.15), (1, 0.00), (1.10, 0.00), (1.20, 0.00), (1.30, 0.00), (1.40, 0.00), (1.50, 0.00), (1.60, 

0.00), (1.70, 0.00), (1.80, 0.00), (1.90, 0.00), (2.00, 0.00) 

CPPO = GRAPH(DVS) 

(0.00, 0.00), (0.05, 0.00), (0.1, 0.00), (0.15, 0.00), (0.2, 0.00), (0.25, 0.00), (0.3, 0.00), (0.35, 0.00), 

(0.4, 0.00), (0.45, 0.00), (0.5, 0.00), (0.55, 0.00), (0.6, 0.00), (0.65, 0.00), (0.7, 0.00), (0.75, 0.00), (0.8, 

0.143), (0.85, 0.286), (0.9, 0.429), (0.95, 0.571), (1.00, 0.714), (1.05, 0.857), (1.10, 1.00), (1.15, 1.00), 

(1.20, 1.00), (1.25, 1.00), (1.30, 1.00), (1.35, 1.00), (1.40, 1.00), (1.45, 1.00), (1.50, 1.00), (1.55, 1.00), 

(1.60, 1.00), (1.65, 1.00), (1.70, 1.00), (1.75, 1.00), (1.80, 1.00), (1.85, 1.00), (1.90, 1.00), (1.95, 1.00), 

(2.00, 1.00) 

CPR = GRAPH(DVS) 

(0.00, 0.3), (0.1, 0.263), (0.2, 0.225), (0.3, 0.188), (0.4, 0.15), (0.5, 0.112), (0.6, 0.075), (0.7, 0.038), 

(0.8, 0.00), (0.9, 0.00), (1, 0.00), (1.10, 0.00), (1.20, 0.00), (1.30, 0.00), (1.40, 0.00), (1.50, 0.00), 

(1.60, 0.00), (1.70, 0.00), (1.80, 0.00), (1.90, 0.00), (2.00, 0.00) 

DVE = GRAPH(DVS) 

(0.00, 1.00), (0.4, 1.00), (0.8, 0.00), (1.20, 0.00), (1.60, 0.00), (2.00, 0.00) 

INSn = GRAPH(TIME) 

(0.00, 0.00), (10.0, 0.00), (20.0, 0.00), (30.0, 50.0), (40.0, 100), (50.0, 150), (60.0, 200), (70.0, 150), 

(80.0, 100), (90.0, 50.0), (100, 5.00), (110, 5.00), (120, 5.00) 
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LD1n = GRAPH(TIME) 

(0.00, 0.00), (10.0, 0.00), (20.0, 0.00), (30.0, 0.004), (40.0, 0.008), (50.0, 0.01), (60.0, 0.007), (70.0, 

0.002), (80.0, 0.00), (90.0, 0.00), (100, 0.00), (110, 0.00), (120, 0.00) 

LD2n = GRAPH(TIME) 

(0.00, 0.00), (10.0, 0.00), (20.0, 0.00), (30.0, 0.002), (40.0, 0.005), (50.0, 0.008), (60.0, 0.01), (70.0, 

0.008), (80.0, 0.007), (90.0, 0.006), (100, 0.005), (110, 0.004), (120, 0.004) 

LD3n = GRAPH(TIME) 

(0.00, 0.00), (10.0, 0.00), (20.0, 0.00), (30.0, 0.003), (40.0, 0.005), (50.0, 0.007), (60.0, 0.009), (70.0, 

0.01), (80.0, 0.01), (90.0, 0.009), (100, 0.007), (110, 0.005), (120, 0.001) 

RDISn = GRAPH(TIME) 

(0.00, 0.00), (10.0, 0.00), (20.0, 0.00), (30.0, 0.001), (40.0, 0.002), (50.0, 0.01), (60.0, 0.01), (70.0, 

0.01), (80.0, 0.01), (90.0, 0.01), (100, 0.01), (110, 0.01), (120, 0.01) 

RFDEFn = GRAPH(TIME) 

(0.00, 0.00), (10.0, 0.00), (20.0, 0.00), (30.0, 0.00), (40.0, 0.001), (50.0, 0.00), (60.0, 0.00), (70.0, 

0.00), (80.0, 0.00), (90.0, 0.00), (100, 0.00), (110, 0.00), (120, 0.00) 

rrmort = GRAPH(DVS) 

(0.00, 0.00), (0.1, 0.00), (0.2, 0.00), (0.3, 0.00), (0.4, 0.00), (0.5, 0.02), (0.6, 0.02), (0.7, 0.02), (0.8, 

0.02), (0.9, 0.02), (1, 0.00), (1.10, 0.00), (1.20, 0.00), (1.30, 0.00), (1.40, 0.00), (1.50, 0.00), (1.60, 

0.00), (1.70, 0.00), (1.80, 0.00), (1.90, 0.00), (2.00, 0.00) 

rrsen = GRAPH(DVS) 

(0.00, 0.00), (0.1, 0.00), (0.2, 0.00), (0.3, 0.00), (0.4, 0.00), (0.5, 0.00), (0.6, 0.00), (0.7, 0.00), (0.8, 

0.00), (0.9, 0.00), (1, 0.00), (1.10, 0.013), (1.20, 0.026), (1.30, 0.04), (1.40, 0.04), (1.50, 0.04), (1.60, 

0.04), (1.70, 0.04), (1.80, 0.04), (1.90, 0.04), (2.00, 0.04) 

SLA = GRAPH(DVS) 

(0.00, 0.037), (1.00, 0.018), (2.00, 0.017) 

VIRn = GRAPH(TIME) 

(0.00, 0.00), (10.0, 0.00), (20.0, 0.00), (30.0, 0.002), (40.0, 0.01), (50.0, 0.01), (60.0, 0.01), (70.0, 

0.01), (80.0, 0.01), (90.0, 0.01), (100, 0.01), (110, 0.01), (120, 0.01) 
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Chapter 9. The RICEPEST and WHEATPEST Models 

 
This chapter introduces two sibling simulation models that have been developed to simulate 

yield losses due to rice pests (RICEPEST) and yield losses due to wheat pests (WHEATPEST). Both 

models have many features in common: 

 Objectives of developing RICEPEST and WHEATPEST. Both models were developed in 

order to simulate yield losses caused by pests (diseases, insects, weeds), individually or in 

combination, under a range of production situations. This allows (1) a ranking of the pests 

according to their importance in terms of the yield losses they cause in various production 

situations and (2) a simulation of the yield gains associated with new technologies, including 

plant protection methods. The results can provide a formal basis for long term strategies in crop 

health management, e.g., priority setting for research. 

 Conceptual framework. Both models have been developed under the conceptual framework 

of GENECROP and GENEPEST described in the previous chapters, where relationships 

between production situations, yield levels, and damage mechanisms are formally captured into 

simulation models. 

 Generic structure of the models. Both RICEPEST and WHEATPEST are built according to 

the same GENECROP structure, which has been described in Chapter 7 for the simulation of 

crop growth, and which accounts for damage mechanisms as described under GENEPEST in 

Chapter 8. In both the rice and the wheat systems, the system considered is 1 m2 of crop in a 

field, with a time step of one day. Contrary to RICEPEST, WHEATPEST does not include a 

component for the dynamics of tillers, because the pests addressed in the wheat model do not 

entail injuries directly affecting tillers. 

 
The purpose of this chapter is to introduce the reader to models that account for multiple 

injuries. The way these models behave with varying levels of differing injuries is shown later with the 

simulation models. The details of the models are not discussed, but the reader will find full listings of 

the programs in Appendices 9.1 and 9.2, as well as references. 

 
Damage mechanisms for a set of pests in rice 

The different rice pests addressed and the mechanisms are summarized in Table 9.1. The details 

of the inclusion of these damage mechanisms in RICEPEST can be found in Willocquet et al. (1998, 

2000, 2002, 2004), and are implemented in the RICEPEST.STMX file. 
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Table 9.1. Rice pests addressed, their damage mechanisms, and their effect in RICEPEST 

Rice pest Damage 
mechanisma 

Physiological effect Effect in RICEPEST

Bacterial leaf 
blight (BLB) 

Light stealer Reduces the intercepted 
radiation 

Reduces the green LAI 

Leaf blast (LB) Light stealer 
Leaf senescence 
accelerator 
Assimilate sapper 

Reduces the intercepted 
radiation 
Increases leaf senescence 
Removes soluble assimilates 
from host 

Reduces the green LAI (lesion area 
+ virtual lesion area) 
Reduces the biomass of leaves by 
increasing the rate of leaf 
senescence 
Outflows assimilates from the pool 
of assimilates 

Sheath blight 
(SHB) 

Light stealer 
Leaf senescence 
accelerator  

Reduces the intercepted 
radiation 
Increases leaf senescence 

Reduces the green LAI 
Reduces the biomass of leaves by 
increasing the rate of leaf 
senescence 

Brown spot 
(BS) 

Light stealer 
 

Reduces the intercepted 
radiation 

Reduces the green LAI (lesion area 
+ virtual lesion area) 

Tungro 
(TUNGRO) 

Photosynthetic 
rate reducer 

Disrupts phloem transport 
 And reduces the rate of 
carbon uptake 

Reduces the RUE 

Neck blast 
(NB) 

Tissue consumer Disrupts transport of 
carbohydrates towards 
panicles 

Reduces the flow of assimilates 
towards panicles 

Sheath rot 
(SHR) 

Tissue consumer Disrupts panicle emergence Reduces the flow of assimilates 
towards panicles 

White head 
(WH) 

Assimilate sapper Disrupts transport of 
carbohydrates towards 
panicles 

Reduces the flow of assimilates 
towards panicles 

Weeds 
(WEED) 

Photosynthetic 
rate reducer 

Reduces water and nutrient 
supply 
Light stealer 
Reduction of water, nutrient 
and radiation reduces RUE 

Reduces the RUE 

Dead 
hearts(DH) 

Stand reducer Reduces the number and 
biomass of tillers 

Reduces the number of vegetative 
tillers 

Brown plant-
hoppers (BPH) 

Assimilate sapper 
Leaf senescence 
accelerator 

Removes soluble assimilates 
from host  
Increases leaf senescence 

Outflows assimilates from the pool 
of assimilates 
Reduces the biomass of leaves by 
increasing the rate of leaf 
senescence 

Defoliators 
(DEF) 

Tissue consumer  Reduces leaf biomass Reduces the biomass of leaves by 
increasing the rate of leaf 
senescence  

Derived from Rabbinge and Vereyken (1980), Rabbinge and Rijsdijk (1981) and Boote et al. (1983). 
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Damage mechanisms for a set of pests in wheat 
 The different wheat pests addressed and the mechanisms are summarized in Table 9.2. The 

details of the inclusion of these damage mechanisms in WHEATPEST can be found in Willocquet et 

al. (2008), and are implemented in the WHEATPEST.STMX file. 

 
Table 9.2. Wheat pests addressed, their damage mechanisms, and their effect in WHEATPEST 
Wheat pest Damage 

mechanisma 
Physiological 
effect 

Effect in WHEATPEST

Powdery mildew 
(PM) 

Light stealer Reduces the 
intercepted 
radiation 

Reduces the green LAI (lesion area + 
virtual lesion area) 

Yellow rust (YR) Light stealer 
Assimilate 
sapper 

Reduces the 
intercepted 
radiation 
Removes soluble 
assimilates from 
host 

Reduces the green LAI (lesion area + 
virtual lesion area) 
Outflows assimilates from the pool of 
assimilates 

Brown rust (BR) Light stealer 
Assimilate 
sapper 

Reduces the 
intercepted 
radiation 
Removes soluble 
assimilates from 
host 

Reduces the green LAI 
Outflows assimilates from the pool of 
assimilates 

Septoria nodorum 
Blotch (SNB) 

Light stealer 
Assimilate 
sapper 

Reduces the 
intercepted 
radiation 
Removes soluble 
assimilates from 
host 

Reduces the green LAI 
Outflows assimilates from the pool of 
assimilates 

Septoria tritici 
Blotch (STB) 

Light stealer 
Assimilate 
sapper 

Reduces the 
intercepted 
radiation 
Removes soluble 
assimilates from 
host 

Reduces the green LAI (lesion area + 
virtual lesion area) 
Outflows assimilates from the pool of 
assimilates 

Take all (TAK) Photosynthetic 
rate reducer 

Disrupts nitrogen 
and water uptake 

Reduces the RUE 

Eyespot (EYS) Photosynthetic 
rate reducer 

Disrupts nitrogen 
and water uptake 

Reduces the RUE 

Sharp eyespot 
(SHY) 

Photosynthetic 
rate reducer 

Disrupts nitrogen 
and water uptake 

Reduces the RUE 

Fusarium stem rot 
(FST) 

Photosynthetic 
rate reducer 

Disrupts nitrogen 
and water uptake 

Reduces the RUE 

BYDV Photosynthetic 
rate reducer 

Disrupts phloem 
transport 
Reduces the rate of 
carbon uptake 

Reduces the RUE 
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Fusarium Head 
Blight (FHB) 

Tissue 
consumerb 

Disrupts transport 
of carbohydrates 
towards ears. 

Reduces the flow of assimilates 
towards ears 

Weeds (WEED) Photosynthetic 
rate reducer 

Reduces water and 
nutrient supply 
Light stealer 
Reduction of water, 
nutrient and 
radiation reduces 
RUE 

Reduces the RUE 

Aphids (APH) Assimilate 
sapper 
Photosynthetic 
rate reducer 

Removes soluble 
assimilates from 
host 
Reduces the RUE  

Outflows assimilates from the pool of 
assimilates 
Reduces the RUE 

a Derived from Rabbinge & Vereyken (1980), Rabbinge & Rijsdijk (1981) and Boote et al. (1983). 
b Production of toxins not included. 
 

Weather and injury drivers in RICEPEST and WHEATPEST 

 

Weather 

RICEPEST uses constant daily minimum temperature, maximum temperature and radiation of 

24°C, 30°C, and 17 MJ/m2, respectively. These are within the range of weather values during the rainy 

season in tropical Asia. 

For WHEATPEST, monthly averages of daily temperature and radiation, computed from 

weather in Wageningen (The Netherlands) during 1951-1980 (Spitters et al., 1989), are interpolated in 

order to generate daily temperature and radiation. 

 

Injury drivers 

Injuries were not entered in the models as random variables; rather, patterns of injuries are 

used, which correspond to specific production situations for both rice in tropical Asia (Savary et al., 

2000; 2006), and wheat in Western Europe (Polley and Thomas, 1991; Daamen, 1990; Daamen and 

Stol, 1990, 1992, 1994; Daamen et al., 1989, 1991, 1992). This linkage between production situations 

and patterns of injuries has been shown to be both reliable and dynamic as production situations evolve 

(Savary et al. 2006). In turn, the intrinsic rate of (attainable) growth was made dependent on 

production situations. This was, again, made possible through careful field surveys where yields were 

measured, experiments, data published in the literature, and a combination of these sources. Thus, the 

injury drivers actually represent a linkage between production situations – attainable yield – intrinsic 

crop growth – injury patterns.  
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Simulations with RICEPEST and WHEATPEST 

 The STELLA models RICEPEST.STMX and WHEATPEST.STMX will allow you, for rice 

and wheat, respectively, to: 

 explore the model structure and equations,  

 explore the model inputs for attainable growth 

 explore the model inputs for actual growth, i.e. the driving functions of the different pests 

included 

 run the model with varying levels of pest inputs, which will allow you to explore: 

o the effects of individual injuries on crop growth and yield 

o the effects of combined injuries on crop growth and yield 

 

Summary 

This chapter describes: 

 A formal modeling structure which captures the linkages between production situations – 

attainable yield – intrinsic crop growth – injury patterns. 

 The framework and objectives under which RICEPEST and WHEATPEST have been 

developed. 

 The damage mechanisms associated with rice and wheat pests and how the corresponding 

(multiple) injuries are captured into RICEPEST and WHEATPEST. 

 Includes the STELLA files, which can be used to explore the models structures, and the effect 

of injuries, individually or in combination, on the simulated dynamics of rice and wheat crop 

growth. 
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Appendix 9.1. Program listing of RICEPEST 

 

LeafW(t) = LeafW(t - dt) + (PartL - RSenL) * dt 

INIT LeafW = 10 

INFLOWS: 

PartL = CPL*(Pool-rdiv) 

OUTFLOWS: 

RSenL = ((rrsen+(SenSHB*SHB)+(SenLB*LB)+DEF)*LeafW)+RDHL+(senBPH*rdBPH) 

maxst(t) = maxst(t - dt) + (partScopy) * dt 

INIT maxst = 6 

INFLOWS: 

partScopy = PartS 

PanW(t) = PanW(t - dt) + (PartP + RTransloc - inj_pan) * dt 

INIT PanW = 0 

INFLOWS: 

PartP = CPP*(Pool-rdiv) 
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RTransloc = IF(DVS>1) then DDIST else 0 

OUTFLOWS: 

inj_pan = (PartP+RTransloc)*(NB+SHR+WH-(NB*SHR)-(NB*WH)-(SHR*WH)-(NB*SHR*WH)) 

Pool(t) = Pool(t - dt) + (RGrowth - PartS - PartL - PartP - PartR - rdiv) * dt 

INIT Pool = 0 

INFLOWS: 

RGrowth = RAD*RUE*(1-EXP(-k*LAI))*(1-(1-exp(-0.003*WEED)))*(1-(0.7*Virdis))*pRUE 

OUTFLOWS: 

PartS = CPS*(Pool-rdiv) 

PartL = CPL*(Pool-rdiv) 

PartP = CPP*(Pool-rdiv) 

PartR = CPR*(Pool-rdiv) 

rdiv = (rsuck*BPH)+(LB*LAI*LBspoDW) 

REPTIL(t) = REPTIL(t - dt) + (Rmat - Rmortr) * dt 

INIT REPTIL = 0 

INFLOWS: 

Rmat = if DVS<0.8 or DVS>1 then 0 else if VTIL<FST*Totil then 0 else RRMAT*VTIL 

OUTFLOWS: 

Rmortr = rrmort*REPTIL 

RootW(t) = RootW(t - dt) + (PartR) * dt 

INIT RootW = 5 

INFLOWS: 

PartR = CPR*(Pool-rdiv) 

SDEFn(t) = SDEFn(t - dt) + (RDEF) * dt 

INIT SDEFn = 0 

INFLOWS: 

RDEF = DEFn 

SDHn(t) = SDHn(t - dt) + (RDH) * dt 

INIT SDHn = 0 

INFLOWS: 

RDH = DHn 

STEMP(t) = STEMP(t - dt) + (Dtemp) * dt 

INIT STEMP = 320 
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INFLOWS: 

Dtemp = ((TMAX+TMIN)/2)-TBASE 

StemW(t) = StemW(t - dt) + (PartS - RTransloc - RsenST) * dt 

INIT StemW = 6 

INFLOWS: 

PartS = CPS*(Pool-rdiv) 

OUTFLOWS: 

RTransloc = IF(DVS>1) then DDIST else 0 

RsenST = RDHST 

VTIL(t) = VTIL(t - dt) + (Rtil - Rmat - Rmrtv) * dt 

INIT VTIL = 250 

INFLOWS: 

Rtil = PartLS*STW*(1-(VTIL/Maxtil))*DVE 

OUTFLOWS: 

Rmat = if DVS<0.8 or DVS>1 then 0 else if VTIL<FST*Totil then 0 else RRMAT*VTIL 

Rmrtv = (rrmort*VTIL)+DH 

BetaBS = 6.3 

BetaLB = 3 

BLB = pBLB*BLBn 

BLBn = GRAPH(TIME) 

(0.00, 0.00), (24.0, 0.00), (48.0, 0.00), (72.0, 0.005), (96.0, 0.01), (120, 0.00) 

BPH = pBPH*BPHn 

BPHn = GRAPH(TIME) 

(0.00, 0.00), (10.0, 0.00), (20.0, 0.00), (30.0, 0.00), (40.0, 60.0), (50.0, 125), (60.0, 190), (70.0, 250), 

(80.0, 250), (90.0, 145), (100, 65.0), (110, 0.00), (120, 0.00) 

BS = pBS*BSn 

BSn = GRAPH(TIME) 

(0.00, 0.00), (24.0, 0.00), (48.0, 0.00), (72.0, 0.005), (96.0, 0.01), (120, 0.01) 

CPL = CPPL*(1-CPR) 

CPP = CPPP*(1-CPR) 

CPPL = GRAPH(DVS) 
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(0.00, 0.55), (0.1, 0.536), (0.2, 0.521), (0.3, 0.507), (0.4, 0.493), (0.5, 0.479), (0.6, 0.464), (0.7, 0.45), 

(0.8, 0.3), (0.9, 0.15), (1, 0.00), (1.10, 0.00), (1.20, 0.00), (1.30, 0.00), (1.40, 0.00), (1.50, 0.00), 

(1.60, 0.00), (1.70, 0.00), (1.80, 0.00), (1.90, 0.00), (2.00, 0.00) 

CPPP = GRAPH(DVS) 

(0.00, 0.00), (0.05, 0.00), (0.1, 0.00), (0.15, 0.00), (0.2, 0.00), (0.25, 0.00), (0.3, 0.00), (0.35, 0.00), 

(0.4, 0.00), (0.45, 0.00), (0.5, 0.00), (0.55, 0.00), (0.6, 0.00), (0.65, 0.00), (0.7, 0.00), (0.75, 0.00), 

(0.8, 0.143), (0.85, 0.286), (0.9, 0.429), (0.95, 0.571), (1.00, 0.714), (1.05, 0.857), (1.10, 1.00), 

(1.15, 1.00), (1.20, 1.00), (1.25, 1.00), (1.30, 1.00), (1.35, 1.00), (1.40, 1.00), (1.45, 1.00), (1.50, 

1.00), (1.55, 1.00), (1.60, 1.00), (1.65, 1.00), (1.70, 1.00), (1.75, 1.00), (1.80, 1.00), (1.85, 1.00), 

(1.90, 1.00), (1.95, 1.00), (2.00, 1.00) 

CPR = GRAPH(DVS) 

(0.00, 0.3), (0.1, 0.263), (0.2, 0.225), (0.3, 0.188), (0.4, 0.15), (0.5, 0.112), (0.6, 0.075), (0.7, 0.038), 

(0.8, 0.00), (0.9, 0.00), (1, 0.00), (1.10, 0.00), (1.20, 0.00), (1.30, 0.00), (1.40, 0.00), (1.50, 0.00), 

(1.60, 0.00), (1.70, 0.00), (1.80, 0.00), (1.90, 0.00), (2.00, 0.00) 

CPS = (1-CPL-CPP)*(1-CPR) 

cumul%DH = 100*SDHn/Totil 

DACE = TIME+14 

dBPHDWn = GRAPH(TIME) 

(0.00, 0.00), (1.00, 0.00), (2.00, 0.00), (3.00, 0.00), (4.00, 0.00), (5.00, 0.00), (6.00, 0.00), (7.00, 0.00), 

(8.00, 0.00), (9.00, 0.00), (10.0, 0.00), (11.0, 0.00), (12.0, 0.00), (13.0, 0.00), (14.0, 0.00), (15.0, 

0.00), (16.0, 0.00), (17.0, 0.00), (18.0, 0.00), (19.0, 0.00), (20.0, 0.00), (21.0, 0.00), (22.0, 0.00), 

(23.0, 0.00), (24.0, 0.00), (25.0, 0.00), (26.0, 0.00), (27.0, 0.00), (28.0, 0.00), (29.0, 0.00), (30.0, 

0.0125), (31.0, 0.0125), (32.0, 0.0125), (33.0, 0.0125), (34.0, 0.0125), (35.0, 0.0125), (36.0, 

0.0125), (37.0, 0.0125), (38.0, 0.0125), (39.0, 0.0125), (40.0, 0.0125), (41.0, 0.0125), (42.0, 

0.0125), (43.0, 0.0125), (44.0, 0.0125), (45.0, 0.0125), (46.0, 0.0125), (47.0, 0.0125), (48.0, 

0.0125), (49.0, 0.0125), (50.0, 0.0125), (51.0, 0.0125), (52.0, 0.0125), (53.0, 0.0125), (54.0, 

0.0125), (55.0, 0.0125), (56.0, 0.0125), (57.0, 0.0125), (58.0, 0.0125), (59.0, 0.0125), (60.0, 

0.0125), (61.0, 0.0125), (62.0, 0.0125), (63.0, 0.0125), (64.0, 0.0125), (65.0, 0.0125), (66.0, 

0.0125), (67.0, 0.0125), (68.0, 0.0125), (69.0, 0.0125), (70.0, 0.0125), (71.0, 0.00), (72.0, 0.00), 

(73.0, 0.00), (74.0, 0.00), (75.0, 0.00), (76.0, 0.00), (77.0, 0.00), (78.0, 0.00), (79.0, 0.00), (80.0, 

0.00), (81.0, 0.00), (82.0, 0.00), (83.0, 0.00), (84.0, 0.00), (85.0, 0.00), (86.0, 0.00), (87.0, 0.00), 

(88.0, 0.00), (89.0, 0.00), (90.0, 0.00), (91.0, 0.00), (92.0, 0.00), (93.0, 0.00), (94.0, 0.00), (95.0, 

0.00), (96.0, 0.00), (97.0, 0.00), (98.0, 0.00), (99.0, 0.00), (100, 0.00), (101, 0.00), (102, 0.00), 
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(103, 0.00), (104, 0.00), (105, 0.00), (106, 0.00), (107, 0.00), (108, 0.00), (109, 0.00), (110, 0.00), 

(111, 0.00), (112, 0.00), (113, 0.00), (114, 0.00), (115, 0.00), (116, 0.00), (117, 0.00), (118, 0.00), 

(119, 0.00), (120, 0.00) 

ddist = 0.0067*maxst 

DEF = pDEF*DEFn 

DEFn = GRAPH(TIME) 

(0.00, 0.00), (10.0, 0.00), (20.0, 0.00), (30.0, 0.0003), (40.0, 0.0005), (50.0, 0.0002), (60.0, 0.00), 

(70.0, 0.00), (80.0, 0.00), (90.0, 0.00), (100, 0.00), (110, 0.00), (120, 0.00) 

DH = pDH*DHn 

DHn = GRAPH(TIME) 

(0.00, 0.00), (10.0, 0.00), (20.0, 0.00), (30.0, 0.00), (40.0, 0.5), (50.0, 0.00), (60.0, 0.00), (70.0, 0.00), 

(80.0, 0.00), (90.0, 0.00), (100, 0.00), (110, 0.00), (120, 0.00) 

DVE = GRAPH(DVS) 

(0.00, 1.00), (0.4, 1.00), (0.8, 0.00), (1.20, 0.00), (1.60, 0.00), (2.00, 0.00) 

DVS = if stemp<TFLOW then STEMP/TFLOW ELSE 1+((STEMP-TFLOW)/(TMAT-TFLOW)) 

DWBPH = 0.001 

FST = 0.05 

grain__yield = 0.85*PanW 

k = 0.6 

LAI = LeafW*SLA*(1-BLB)*((1-BS)^BetaBS)*(1-SHB)*((1-LB)^BetaLB) 

LB = pLB*LBn 

LBn = GRAPH(TIME) 

(0.00, 0.00), (5.00, 0.00), (10.0, 0.00), (15.0, 0.002), (20.0, 0.004), (25.0, 0.007), (30.0, 0.01), (35.0, 

0.005), (40.0, 0.00), (45.0, 0.00), (50.0, 0.00), (55.0, 0.00), (60.0, 0.00), (65.0, 0.00), (70.0, 0.00), 

(75.0, 0.00), (80.0, 0.00), (85.0, 0.00), (90.0, 0.00), (95.0, 0.00), (100, 0.00), (105, 0.00), (110, 

0.00), (115, 0.00), (120, 0.00) 

LBspoDW = GRAPH(TIME) 

(0.00, 0.00), (1.00, 0.00), (2.00, 0.00), (3.00, 0.00), (4.00, 0.00), (5.00, 0.00), (6.00, 0.00), (7.00, 0.00), 

(8.00, 0.00), (9.00, 0.00), (10.0, 20.0), (11.0, 20.0), (12.0, 20.0), (13.0, 20.0), (14.0, 20.0), (15.0, 

20.0), (16.0, 20.0), (17.0, 20.0), (18.0, 20.0), (19.0, 20.0), (20.0, 20.0), (21.0, 20.0), (22.0, 20.0), 

(23.0, 20.0), (24.0, 20.0), (25.0, 0.00), (26.0, 0.00), (27.0, 0.00), (28.0, 0.00), (29.0, 0.00), (30.0, 

0.00), (31.0, 0.00), (32.0, 0.00), (33.0, 0.00), (34.0, 0.00), (35.0, 0.00), (36.0, 0.00), (37.0, 0.00), 

(38.0, 0.00), (39.0, 0.00), (40.0, 0.00), (41.0, 0.00), (42.0, 0.00), (43.0, 0.00), (44.0, 0.00), (45.0, 
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0.00), (46.0, 0.00), (47.0, 0.00), (48.0, 0.00), (49.0, 0.00), (50.0, 0.00), (51.0, 0.00), (52.0, 0.00), 

(53.0, 0.00), (54.0, 0.00), (55.0, 0.00), (56.0, 0.00), (57.0, 0.00), (58.0, 0.00), (59.0, 0.00), (60.0, 

0.00), (61.0, 0.00), (62.0, 0.00), (63.0, 0.00), (64.0, 0.00), (65.0, 0.00), (66.0, 0.00), (67.0, 0.00), 

(68.0, 0.00), (69.0, 0.00), (70.0, 0.00), (71.0, 0.00), (72.0, 0.00), (73.0, 0.00), (74.0, 0.00), (75.0, 

0.00), (76.0, 0.00), (77.0, 0.00), (78.0, 0.00), (79.0, 0.00), (80.0, 0.00), (81.0, 0.00), (82.0, 0.00), 

(83.0, 0.00), (84.0, 0.00), (85.0, 0.00), (86.0, 0.00), (87.0, 0.00), (88.0, 0.00), (89.0, 0.00), (90.0, 

0.00), (91.0, 0.00), (92.0, 0.00), (93.0, 0.00), (94.0, 0.00), (95.0, 0.00), (96.0, 0.00), (97.0, 0.00), 

(98.0, 0.00), (99.0, 0.00), (100, 0.00), (101, 0.00), (102, 0.00), (103, 0.00), (104, 0.00), (105, 

0.00), (106, 0.00), (107, 0.00), (108, 0.00), (109, 0.00), (110, 0.00), (111, 0.00), (112, 0.00), (113, 

0.00), (114, 0.00), (115, 0.00), (116, 0.00), (117, 0.00), (118, 0.00), (119, 0.00), (120, 0.00) 

LWT = LeafW/VTIL 

Maxtil = 900 

NB = pNB*NBn 

NBn = GRAPH(TIME) 

(0.00, 0.01), (120, 0.01) 

PartLS = PartL+PartS 

pBLB = 0 

pBPH = 0 

pBS = 0 

pDEF = 0 

pDH = 0 

pLB = 0 

pNB = 0 

pRUE = 1 

pSHB = 0 

pSHR = 0 

pVD = 0 

pWEED = 0 

pWH = 0 

RAD = 17 

rdBPH = if DVS<1 then 0 else pBPH*dBPHDWn 

RDHL = LWT*DH 

RDHST = STWT*DH 
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RRMAT = 0.3 

rrmort = GRAPH(DVS) 

(0.00, 0.00), (0.1, 0.00), (0.2, 0.00), (0.3, 0.00), (0.4, 0.00), (0.5, 0.02), (0.6, 0.02), (0.7, 0.02), (0.8, 

0.02), (0.9, 0.02), (1, 0.00), (1.10, 0.00), (1.20, 0.00), (1.30, 0.00), (1.40, 0.00), (1.50, 0.00), 

(1.60, 0.00), (1.70, 0.00), (1.80, 0.00), (1.90, 0.00), (2.00, 0.00) 

rrsen = GRAPH(DVS) 

(0.00, 0.00), (0.1, 0.00), (0.2, 0.00), (0.3, 0.00), (0.4, 0.00), (0.5, 0.00), (0.6, 0.00), (0.7, 0.00), (0.8, 

0.00), (0.9, 0.00), (1, 0.00), (1.10, 0.013), (1.20, 0.026), (1.30, 0.04), (1.40, 0.04), (1.50, 0.04), 

(1.60, 0.04), (1.70, 0.04), (1.80, 0.04), (1.90, 0.04), (2.00, 0.04) 

rsuck = 0.002 

RUE = GRAPH(DVS) 

(0.00, 1.20), (0.1, 1.20), (0.2, 1.20), (0.3, 1.20), (0.4, 1.20), (0.5, 1.20), (0.6, 1.20), (0.7, 1.20), (0.8, 

1.20), (0.9, 1.20), (1, 1.15), (1.10, 1.10), (1.20, 1.10), (1.30, 1.10), (1.40, 1.10), (1.50, 1.10), 

(1.60, 1.10), (1.70, 1.10), (1.80, 1.10), (1.90, 1.10), (2.00, 1.10) 

senBPH = 6 

SenLB = 0.0378 

SenSHB = 0.076 

SHB = pSHB*SHBn 

SHBn = GRAPH(TIME) 

(0.00, 0.00), (10.0, 0.00), (20.0, 0.00), (30.0, 0.00), (40.0, 0.0023), (50.0, 0.0033), (60.0, 0.0066), 

(70.0, 0.01), (80.0, 0.0088), (90.0, 0.0077), (100, 0.0066), (110, 0.0066), (120, 0.0066) 

SHR = pSHR*SHRn 

SHRn = GRAPH(TIME) 

(0.00, 0.01), (120, 0.01) 

SLA = GRAPH(DVS) 

(0.00, 0.037), (1.00, 0.018), (2.00, 0.017) 

STW = 20 

STWT = StemW/VTIL 

TBASE = 8 

TFLOW = 1450 

TMAT = 2030 

TMAX = 30 

TMIN = 24 
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Totil = VTIL+REPTIL 

Virdis = pVD*Virdisn 

Virdisn = GRAPH(TIME) 

(0.00, 0.00), (10.5, 0.00), (21.0, 0.00), (31.5, 0.005), (42.0, 0.01), (52.5, 0.01), (63.0, 0.01), (73.5, 

0.01), (84.0, 0.01), (94.5, 0.01), (105, 0.01) 

WEED = pWEED*WEEDn 

WEEDn = GRAPH(TIME) 

(0.00, 0.00), (10.0, 1.00), (20.0, 2.00), (30.0, 3.00), (40.0, 4.00), (50.0, 5.00), (60.0, 6.00), (70.0, 7.00), 

(80.0, 8.00), (90.0, 9.00), (100, 10.0), (110, 10.0), (120, 10.0) 

WH = pWH*WHn 

WHn = GRAPH(TIME) 

(0.00, 0.01), (120, 0.01) 

 

Appendix 9.2. Program listing of WHEATPEST 

 

EarB(t) = EarB(t - dt) + (PartE + RTransloc - inj_ear) * dt 

INIT EarB = 0 

INFLOWS: 

PartE = CPE*(Pool-rasdiv) 

RTransloc = IF(DVS>1) then ddist else 0 

OUTFLOWS: 

inj_ear = (PartE+RTransloc)*(1.1*FHB) 

Honey(t) = Honey(t - dt) + (rhoney) * dt 

INIT Honey = 0 

INFLOWS: 

rhoney = 0.35*rsap 

LeafB(t) = LeafB(t - dt) + (PartL - RSenL) * dt 

INIT LeafB = 10 

INFLOWS: 

PartL = CPL*(Pool-rasdiv) 

OUTFLOWS: 

RSenL = rrsen*LeafB 

MaxStemb(t) = MaxStemb(t - dt) + (rmaxstemb) * dt 
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INIT MaxStemb = 6 

INFLOWS: 

rmaxstemb = PartS 

Pool(t) = Pool(t - dt) + (RGrowth - PartS - PartL - PartE - PartR - rasdiv) * dt 

INIT Pool = 0 

INFLOWS: 

RGrowth = RAD*RUE*(1-EXP(-k*LAI))*(1-(0.35*BYDV))*(1-TAK)*(1-(1-exp(-

0.003*WEED)))*(MAX(0,(1-(0.63*SNB))))*(MAX(0,(1-(0.63*STB))))*(1-(0.35*EYS))*(1-

(0.3*SHY))*(1-(0.45*FST))*rfaph 

OUTFLOWS: 

PartS = CPS*(Pool-rasdiv) 

PartL = CPL*(Pool-rasdiv) 

PartE = CPE*(Pool-rasdiv) 

PartR = CPR*(Pool-rasdiv) 

rasdiv = (min(Pool,(4.62*YR*LAI)+(4.62*BR*LAI)+rsap)) 

RootB(t) = RootB(t - dt) + (PartR) * dt 

INIT RootB = 5 

INFLOWS: 

PartR = CPR*(Pool-rasdiv) 

StemB(t) = StemB(t - dt) + (PartS - RTransloc) * dt 

INIT StemB = 6 

INFLOWS: 

PartS = CPS*(Pool-rasdiv) 

OUTFLOWS: 

RTransloc = IF(DVS>1) then ddist else 0 

STEMP(t) = STEMP(t - dt) + (Dtemp) * dt 

INIT STEMP = 620 

INFLOWS: 

Dtemp = ((TMAX+TMIN)/2)-TBASE 

aphfw = APHN*sfwaph*multact 

APHN = APHNn*pAPHN 

APHNn = GRAPH(TIME) 
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(145, 0.00), (155, 25.0), (165, 50.0), (175, 70.0), (185, 125), (195, 250), (205, 0.00), (215, 0.00), (225, 

0.00) 

BetaPM = 2.5 

BetaSTB = 1.25 

BetaYR = 1.5 

BR = pBR*BRn 

BRn = GRAPH(TIME) 

(75.0, 0.00), (100, 0.0004), (125, 0.0008), (150, 0.001), (175, 0.006), (200, 0.01), (225, 0.01) 

BYDV = pBYDV*BYDVn 

BYDVn = GRAPH(TIME) 

(75.0, 0.01), (90.0, 0.01), (105, 0.01), (120, 0.01), (135, 0.01), (150, 0.01), (165, 0.01), (180, 0.01), 

(195, 0.01), (210, 0.01), (225, 0.01) 

CPE = (1-CPR)*(1-CpPL-CPpS) 

CPL = CPPL*(1-CPR) 

CPPL = GRAPH(DVS) 

(0.00, 0.65), (0.05, 0.65), (0.1, 0.65), (0.15, 0.67), (0.2, 0.69), (0.25, 0.7), (0.3, 0.66), (0.35, 0.62), (0.4, 

0.58), (0.45, 0.54), (0.5, 0.5), (0.55, 0.41), (0.6, 0.32), (0.65, 0.23), (0.7, 0.15), (0.75, 0.12), (0.8, 

0.09), (0.85, 0.06), (0.9, 0.04), (0.95, 0.00), (1.00, 0.00), (1.05, 0.00), (1.10, 0.00), (1.15, 0.00), 

(1.20, 0.00), (1.25, 0.00), (1.30, 0.00), (1.35, 0.00), (1.40, 0.00), (1.45, 0.00), (1.50, 0.00), (1.55, 

0.00), (1.60, 0.00), (1.65, 0.00), (1.70, 0.00), (1.75, 0.00), (1.80, 0.00), (1.85, 0.00), (1.90, 0.00), 

(1.95, 0.00), (2.00, 0.00) 

CPPS = GRAPH(DVS) 

(0.00, 0.35), (0.05, 0.35), (0.1, 0.35), (0.15, 0.33), (0.2, 0.31), (0.25, 0.3), (0.3, 0.34), (0.35, 0.38), (0.4, 

0.42), (0.45, 0.46), (0.5, 0.5), (0.55, 0.59), (0.6, 0.68), (0.65, 0.77), (0.7, 0.85), (0.75, 0.88), (0.8, 

0.91), (0.85, 0.94), (0.9, 0.96), (0.95, 1.00), (1.00, 0.5), (1.05, 0.00), (1.10, 0.00), (1.15, 0.00), 

(1.20, 0.00), (1.25, 0.00), (1.30, 0.00), (1.35, 0.00), (1.40, 0.00), (1.45, 0.00), (1.50, 0.00), (1.55, 

0.00), (1.60, 0.00), (1.65, 0.00), (1.70, 0.00), (1.75, 0.00), (1.80, 0.00), (1.85, 0.00), (1.90, 0.00), 

(1.95, 0.00), (2.00, 0.00) 

CPR = GRAPH(DVS) 

(0.00, 0.5), (0.1, 0.5), (0.2, 0.4), (0.3, 0.3), (0.4, 0.17), (0.5, 0.13), (0.6, 0.1), (0.7, 0.07), (0.8, 0.05), 

(0.9, 0.03), (1, 0.02), (1.10, 0.01), (1.20, 0.00), (1.30, 0.00), (1.40, 0.00), (1.50, 0.00), (1.60, 

0.00), (1.70, 0.00), (1.80, 0.00), (1.90, 0.00), (2.00, 0.00) 

CPS = CPPS*(1-CPR) 

163



 

ddist = 0.0025*MaxStemb 

DVS = if stemp<TFLOW then STEMP/TFLOW ELSE 1+((STEMP-TFLOW)/(TMAT-TFLOW)) 

EYS = pEYS*EYSn 

EYSn = GRAPH(TIME) 

(75.0, 0.00), (150, 0.00), (225, 0.01) 

FHB = pFHB*FHBn 

FHBn = GRAPH(TIME) 

(75.0, 0.01), (225, 0.01) 

FST = pFST*FSTn 

FSTn = GRAPH(TIME) 

(75.0, 0.00), (150, 0.00), (225, 0.01) 

grain__yield = 0.85*EarB 

k = 0.65 

LAI = LeafB*SLA*((1-PM)^BetaPM)*(1-SNB)*((1-STB)^BetaSTB)*((1-YR)^BetaYR)*(1-BR) 

multact = 0.001 

pAPHN = 0 

PartLS = PartL+PartS 

pBR = 0 

pBYDV = 0 

pEYS = 0 

pFHB = 0 

pFST = 0 

PM = pPM*PMn 

PMn = GRAPH(TIME) 

(75.0, 0.00), (100, 0.001), (125, 0.002), (150, 0.003), (175, 0.0065), (200, 0.01), (225, 0.01) 

pPM = 0 

pRUE = 1 

pSHY = 0 

pSNB = 0 

pSTB = 0 

pTAK = 0 

pWEED = 0 

pYR = 0 
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RAD = GRAPH(TIME) 

(75.0, 7.80), (105, 13.0), (135, 16.3), (165, 17.5), (195, 15.6), (225, 13.8) 

rfaph = max(1-(Honey*0.015),0.8) 

rrsap = GRAPH(TIME) 

(75.0, 0.45), (90.0, 0.45), (105, 0.45), (120, 0.45), (135, 0.45), (150, 0.45), (165, 0.45), (180, 0.45), 

(195, 0.32), (210, 0.2), (225, 0.24) 

rrsen = GRAPH(DVS) 

(0.00, 0.00), (0.2, 0.00), (0.4, 0.00), (0.6, 0.00), (0.8, 0.00), (1.00, 0.00), (1.20, 0.01), (1.40, 0.025), 

(1.60, 0.04), (1.80, 0.1), (2.00, 0.1) 

rsap = rrsap*aphfw 

RUE = GRAPH(DVS*pRUE) 

(0.1, 1.20), (0.3, 1.20), (0.5, 1.20), (0.7, 1.20), (0.9, 1.20), (1.10, 1.10), (1.30, 1.10), (1.50, 1.10), (1.70, 

1.10), (1.90, 1.10), (2.10, 1.10) 

sfwaph = GRAPH(TIME) 

(75.0, 0.00), (85.7, 0.00), (96.4, 0.00), (107, 0.05), (118, 0.1), (129, 0.15), (139, 0.2), (150, 0.25), (161, 

0.316), (171, 0.316), (182, 0.283), (193, 0.25), (204, 0.33), (214, 0.415), (225, 0.415) 

SHY = pSHY*SHYn 

SHYn = GRAPH(TIME) 

(75.0, 0.00), (150, 0.00), (225, 0.01) 

SLA = GRAPH(DVS) 

(0.00, 0.037), (1.00, 0.018), (2.00, 0.017) 

SNB = pSNB*SNBn 

SNBn = GRAPH(TIME) 

(75.0, 0.00), (100, 0.0003), (125, 0.0006), (150, 0.001), (175, 0.0055), (200, 0.01), (225, 0.01) 

STB = pSTB*STBn 

STBn = GRAPH(TIME) 

(75.0, 0.00), (100, 0.0003), (125, 0.0006), (150, 0.001), (175, 0.0055), (200, 0.01), (225, 0.01) 

TAK = pTAK*TAKn 

TAKn = GRAPH(TIME) 

(75.0, 0.0005), (100, 0.001), (125, 0.0015), (150, 0.002), (175, 0.006), (200, 0.01), (225, 0.01) 

TBASE = 0 

TFLOW = 1600 

TMAT = 2500 
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TMAX = GRAPH(TIME) 

(75.0, 8.90), (105, 12.4), (135, 17.3), (165, 20.5), (195, 21.4), (225, 21.5) 

TMIN = GRAPH(TIME) 

(75.0, 1.20), (105, 3.30), (135, 7.30), (165, 10.3), (195, 12.2), (225, 12.0) 

WEED = pWEED*WEEDn 

WEEDn = GRAPH(TIME) 

(75.0, 0.00), (100, 2.00), (125, 4.00), (150, 6.00), (175, 8.00), (200, 10.0), (225, 10.0) 

YR = pYR*YRn 

YRn = GRAPH(TIME) 

(75.0, 0.00), (100, 0.0003), (125, 0.0006), (150, 0.002), (175, 0.0058), (200, 0.01), (225, 0.00) 
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Chapter 10. Meaning, Use, and Limits of Simulation Models 

 

 This material is not a textbook or a review; it cannot replace either of these. We 

shall simply draw the attention of the user to a few points which seem to us as 

particularly relevant from a practical simulation modeling point of view. Although this 

material is by no means trying to address philosophical issues, we shall nevertheless point 

at a few epistemological questions and leave them for further thoughts. 

 

Model evaluation 

 Model evaluation comes first. Entire excellent books are devoted to this subject, 

which again, this short text cannot have the ambition to replace. Shannon (1975) posed 

two questions on interpretation and validation of models: 

1. what is meant by establishing validity?, and 

2. what criteria should be used? 

In his PhD dissertation and a seminal article on model evaluation, Teng (1981) 

indicated three views that can be taken about validation: 

 The rationalist view: "Rationalism holds that a model is simply a system of 

logical deductions made from a set of premises of unquestionable truth, which 

may or may not themselves be subject to empirical or objective testing. In its 

strictest sense, the premises are what Immanuel Kant termed synthetic a priori 

premises." 

 The empiricist view: "The empiricist holds that if any of the postulates or 

assumptions used in a model cannot be independently verified by experiment, or 

analysis of experimental data, then the model cannot be considered valid. In its 

strictest sense, empiricism states that models should be developed only using 

proven or verifiable facts, not assumptions." 

 The positivist view: "The positivist states that a model is valid only if it is capable 

of accurate predictions, regardless of its internal structure or underlying logic. 

Positivism, therefore, shifts the emphasis away from model building to model 

utility." 
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Modeling of biological systems borrows elements from the three points of view, 

with varying degrees, depending on the modeling objectives. It borrows elements from 

the rationalist view, because we try our best to incorporate elements of reality; we are 

well aware, however, that the system and the corresponding model, regardless of their 

complexity, are only simplification of reality. It borrows elements of the empiricist view, 

as we try to incorporate as much experimentally measured data (as parameters or 

response functions) as we can; yet determining a set of genuine assumptions can be very 

hard, especially when one considers the stochasticity of nature; and testing the various 

components of a system may not necessarily yield an evaluation of an entire system, 

where these components interact. Lastly, it borrows elements from the positivist view, as 

the aim of model development is to serve a purpose; a question, however, remains as to 

whether any model would be acceptable, based on its sole performances, and regardless 

of the scientific value of its logic. 

"Model evaluation" and "model validation" are often used interchangeably. The 

expressions however do not address the same objectives or processes (Thornley and 

France, 2007): 

 Model evaluation is used to include all methods of critiquing a model, whereas 

 Model validation is the demonstration that, within a specified domain of 

application, a model yields acceptable predictive accuracy over that domain. 

As a consequence, one has to recognize again that, being derived from an a priori 

view of reality, system simulation models always are incomplete, and thus model 

evaluation can only be incomplete as well. On the other hand, validity is not a property of 

a model alone, but also of the observations against which it is being tested. Thus, 

validation involves the use of actual data (and their inherent errors), in actual 

circumstances (experiments in specific set-ups, in specific situations). The perception of 

simulation models as "gigantic regression equations" (Thornley and France, 2007) is 

misguided; yet it is not surprising that efforts are still invested in developing simulation 

models and attempting conclusive validation. These contrasting points of views are 

actually linked to the objective and evaluation of models, which are briefly outlined 

below. 
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For now, borrowing from Teng (1981), Rabbinge et al. (1983), and Thornley and 

France (2007), one can suggest the following steps for model evaluation: 

 model verification: checking that the programming structure and the computations 

are performed as expected; 

 visual assessment of the outputs of the model and its behavior: assessing whether 

the models' output conform with the expected overall behavior of a system; 

 quantitative assessments of the model's outputs against numerical observations, 

with a large number of procedures. A starting point is to consider that common 

statistical testing aims at rejecting the hypothesis H0 that the distributions of 

observed and simulated values are identical. Testing H0 is opposite, however, to 

the issue of validation, where one wants to establish the sameness of outputs and 

observations. H1 is the hypothesis that the two distributions are different. The 

error of rejecting, wrongly, H1 is the main concern in model evaluation, and 

entails a number of approaches, for which Thornley and France (2007) provide a 

starting point. 

 

Evolution of models 

Modeling is an ongoing process, as new knowledge is made available, and model 

testing is undertaken. Penning de Vries (1982) distinguished three development phases, 

with: 

 Preliminary models, enabling the communication, quantification, and evaluation 

of hypotheses. These models are developed at the frontier of knowledge, and are 

generally short lived. However, such models can be highly useful for the scientist 

in guiding research. 

 Comprehensive models are built upon the former ones, as a result of knowledge 

accumulation. Comprehensive models are meant to be explanatory, because their 

structure, their parameters, and their driving functions are derived from actual 

experimental work and observations. Such models, however, are often large and 

intricate, making their communication difficult. 

 Summary models are a necessary outcome of comprehensive models; they 

synthesize what appears to be their most important components. As stated by 
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Penning de Vries (1982), "the" summary model of a comprehensive model does 

not exist: this depends on the depth and objective aimed at. 

 

Table 10.1 summarizes the properties of these three types of models. One may note that 

the evaluation process and its ambitions will depend on the type of model. 

 

Table 10.1. Relative values of models in different phases of development (From 

Penning de Vries, 1982) 

Types of 
models 

Predictive 
value 

Scientific 
value 

Instructive 
value 

Simplicity 

Preliminary very low very high high high 
Comprehensive moderate - 

high 
very high low very low 

Summary high low high very high 
 

 

Use of simulation models 

A key value of simulation models is their heuristic value: they enable the mapping 

of processes that are assumed to take place in a given system. Success here depends on a 

proper choice of system's limits and state variables, which also implies deciding which 

variables will be external to, i.e., independent from, the system, and be driving variables. 

There is a large flexibility in laying out links (as flows, or as numerical connections), or 

erasing them. One may see this as the sketching phase of a painter preparing her/his 

work. This stage, of course, is essential. This is where independence of thought and 

creativity lies. From it, too, will depend all the 'true' modeling work. 

Laying out hypotheses is in part related to the previous stage. It involves more, 

however, because such hypotheses will be derived from the modeler's experience, or 

experiments. "No one can be a good observer unless he is a good theorizer" (Charles 

Darwin, quoted from Zadoks, 1972). We believe the reverse to be true too, and this is 

why modeling needs to combine both conceptual and actual experimental work.  In doing 

so, the development of a (preliminary) model helps in guiding research: questions are 

asked, knowledge gaps are identified, and thus experiments for a purpose are designed. 

Modeling goes hand in hand with experimental work. 

When enough hypotheses have been assembled, a next stage may consist in 

conducting verifications and preliminary scenario analyses: is the model behaving as one 
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might expect, or does it go astray? In the latter case, one needs to re-consider the previous 

steps. An important effort at this stage is often to be considered: epidemiological experts 

often tend to look at a large number of details, and simplification is needed. This may 

entail the need to ponder the time constant of the processes involved and ensure that two 

levels of integration (in epidemiology: an epidemic and its underlying processes; in crop 

loss modeling: yield build-up and its determining, limiting, and reducing factors) are 

considered. 

When one is satisfied, overall, with the model behavior, an evaluation phase is 

needed, as discussed above. This enables one of the most interesting outcomes of 

modeling, i.e., scenario analysis. Simulation modeling enables projections in possible 

futures. These futures may be materialized by the driving functions (quite a few plant 

pathologists are involved in climate change research, for instance; Garrett, 2010) or by 

the parameter values. 

Another use of models is to conduct simulated experiments. Luo and Zeng (1995), 

for instance, provide a fine example of such work on components of partial resistance to 

yellow rust of wheat, with strong links with experimental work. 

Model simplification then can lead to important outcomes from the practical 

standpoint. One, of course, is disease management, for which quite a number of models 

have been developed. One of many examples is SIMCAST (Fry et al., 1983; Grünwald et 

al., 2000) for potato late blight. Again, simulation modeling can become a very powerful 

scoping approach. Combining this potato late blight management model with a GIS, 

Hijmans et al. (2000) paved the way towards global geophytopathology and risk 

assessment. This major outcome of decades of research is one example, which should 

encourage plant pathologists and biologists, in general, to engage into a field which, we 

believe, is still full of promises. 
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Instructions to Run the Simulation Models 
 
A series of simulation models is provided with these modules and is available on this website. 
 
These models have been built with the STELLA® software program, and can be run using 
different programs, available at the ISEE systems web site http://www.iseesystems.com/ 
 
1. The models can be run and explored using the isee Player program, which can be downloaded 
for free. The direct link to download isee Player is: 
http://www.iseesystems.com/softwares/player/iseeplayer.aspx 
 
2. These models can also be run using the full STELLA® v10 software program, which can be 
purchased online at http://www.iseesystems.com/. 
 
3. A free trial version of the STELLA program v10 can also be downloaded from the same 
website.  The direct link to download the free trial version is: 
http://www.iseesystems.com/community/downloads/STELLA/STELLADemo.aspx 
 
Two sets of models are available in this course: models that can be run with STELLA v10 (file 
extension .STMX), and models which can be run with STELLA v9 (file extension .STM). The 
latter version will enable users who use version 9 to run the models. 
 
More information about these programs can be found at: 
 
http://www.iseesystems.com/softwares/Education/StellaSoftware.aspx 
 
and  
 
http://www.iseesystems.com/community/downloads/tutorials/ModelBuilding.aspx 
 
 
 
Model Files: 
 

STELLA v9 

 STELLA v10.0.4 
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http://www.apsnet.org/edcenter/advanced/topics/BotanicalEpidemiology/Documents/STELLAV9.zip
http://www.apsnet.org/edcenter/advanced/topics/BotanicalEpidemiology/Documents/STELLAv10.zip



