
 

Chapter 10. Meaning, Use, and Limits of Simulation Models 

 

 This material is not a textbook or a review; it cannot replace either of these. We 

shall simply draw the attention of the user to a few points which seem to us as 

particularly relevant from a practical simulation modeling point of view. Although this 

material is by no means trying to address philosophical issues, we shall nevertheless point 

at a few epistemological questions and leave them for further thoughts. 

 

Model evaluation 

 Model evaluation comes first. Entire excellent books are devoted to this subject, 

which again, this short text cannot have the ambition to replace. Shannon (1975) posed 

two questions on interpretation and validation of models: 

1. what is meant by establishing validity?, and 

2. what criteria should be used? 

In his PhD dissertation and a seminal article on model evaluation, Teng (1981) 

indicated three views that can be taken about validation: 

 The rationalist view: "Rationalism holds that a model is simply a system of 

logical deductions made from a set of premises of unquestionable truth, which 

may or may not themselves be subject to empirical or objective testing. In its 

strictest sense, the premises are what Immanuel Kant termed synthetic a priori 

premises." 

 The empiricist view: "The empiricist holds that if any of the postulates or 

assumptions used in a model cannot be independently verified by experiment, or 

analysis of experimental data, then the model cannot be considered valid. In its 

strictest sense, empiricism states that models should be developed only using 

proven or verifiable facts, not assumptions." 

 The positivist view: "The positivist states that a model is valid only if it is capable 

of accurate predictions, regardless of its internal structure or underlying logic. 

Positivism, therefore, shifts the emphasis away from model building to model 

utility." 

 



 

Modeling of biological systems borrows elements from the three points of view, 

with varying degrees, depending on the modeling objectives. It borrows elements from 

the rationalist view, because we try our best to incorporate elements of reality; we are 

well aware, however, that the system and the corresponding model, regardless of their 

complexity, are only simplification of reality. It borrows elements of the empiricist view, 

as we try to incorporate as much experimentally measured data (as parameters or 

response functions) as we can; yet determining a set of genuine assumptions can be very 

hard, especially when one considers the stochasticity of nature; and testing the various 

components of a system may not necessarily yield an evaluation of an entire system, 

where these components interact. Lastly, it borrows elements from the positivist view, as 

the aim of model development is to serve a purpose; a question, however, remains as to 

whether any model would be acceptable, based on its sole performances, and regardless 

of the scientific value of its logic. 

"Model evaluation" and "model validation" are often used interchangeably. The 

expressions however do not address the same objectives or processes (Thornley and 

France, 2007): 

 Model evaluation is used to include all methods of critiquing a model, whereas 

 Model validation is the demonstration that, within a specified domain of 

application, a model yields acceptable predictive accuracy over that domain. 

As a consequence, one has to recognize again that, being derived from an a priori 

view of reality, system simulation models always are incomplete, and thus model 

evaluation can only be incomplete as well. On the other hand, validity is not a property of 

a model alone, but also of the observations against which it is being tested. Thus, 

validation involves the use of actual data (and their inherent errors), in actual 

circumstances (experiments in specific set-ups, in specific situations). The perception of 

simulation models as "gigantic regression equations" (Thornley and France, 2007) is 

misguided; yet it is not surprising that efforts are still invested in developing simulation 

models and attempting conclusive validation. These contrasting points of views are 

actually linked to the objective and evaluation of models, which are briefly outlined 

below. 

 



 

For now, borrowing from Teng (1981), Rabbinge et al. (1983), and Thornley and 

France (2007), one can suggest the following steps for model evaluation: 

 model verification: checking that the programming structure and the computations 

are performed as expected; 

 visual assessment of the outputs of the model and its behavior: assessing whether 

the models' output conform with the expected overall behavior of a system; 

 quantitative assessments of the model's outputs against numerical observations, 

with a large number of procedures. A starting point is to consider that common 

statistical testing aims at rejecting the hypothesis H0 that the distributions of 

observed and simulated values are identical. Testing H0 is opposite, however, to 

the issue of validation, where one wants to establish the sameness of outputs and 

observations. H1 is the hypothesis that the two distributions are different. The 

error of rejecting, wrongly, H1 is the main concern in model evaluation, and 

entails a number of approaches, for which Thornley and France (2007) provide a 

starting point. 

 

Evolution of models 

Modeling is an ongoing process, as new knowledge is made available, and model 

testing is undertaken. Penning de Vries (1982) distinguished three development phases, 

with: 

 Preliminary models, enabling the communication, quantification, and evaluation 

of hypotheses. These models are developed at the frontier of knowledge, and are 

generally short lived. However, such models can be highly useful for the scientist 

in guiding research. 

 Comprehensive models are built upon the former ones, as a result of knowledge 

accumulation. Comprehensive models are meant to be explanatory, because their 

structure, their parameters, and their driving functions are derived from actual 

experimental work and observations. Such models, however, are often large and 

intricate, making their communication difficult. 

 Summary models are a necessary outcome of comprehensive models; they 

synthesize what appears to be their most important components. As stated by 



 

Penning de Vries (1982), "the" summary model of a comprehensive model does 

not exist: this depends on the depth and objective aimed at. 

 

Table 10.1 summarizes the properties of these three types of models. One may note that 

the evaluation process and its ambitions will depend on the type of model. 

 

Table 10.1. Relative values of models in different phases of development (From 

Penning de Vries, 1982) 

Types of 
models 

Predictive 
value 

Scientific 
value 

Instructive 
value 

Simplicity 

Preliminary very low very high high high 
Comprehensive moderate - 

high 
very high low very low 

Summary high low high very high 
 

 

Use of simulation models 

A key value of simulation models is their heuristic value: they enable the mapping 

of processes that are assumed to take place in a given system. Success here depends on a 

proper choice of system's limits and state variables, which also implies deciding which 

variables will be external to, i.e., independent from, the system, and be driving variables. 

There is a large flexibility in laying out links (as flows, or as numerical connections), or 

erasing them. One may see this as the sketching phase of a painter preparing her/his 

work. This stage, of course, is essential. This is where independence of thought and 

creativity lies. From it, too, will depend all the 'true' modeling work. 

Laying out hypotheses is in part related to the previous stage. It involves more, 

however, because such hypotheses will be derived from the modeler's experience, or 

experiments. "No one can be a good observer unless he is a good theorizer" (Charles 

Darwin, quoted from Zadoks, 1972). We believe the reverse to be true too, and this is 

why modeling needs to combine both conceptual and actual experimental work.  In doing 

so, the development of a (preliminary) model helps in guiding research: questions are 

asked, knowledge gaps are identified, and thus experiments for a purpose are designed. 

Modeling goes hand in hand with experimental work. 

When enough hypotheses have been assembled, a next stage may consist in 

conducting verifications and preliminary scenario analyses: is the model behaving as one 



 

might expect, or does it go astray? In the latter case, one needs to re-consider the previous 

steps. An important effort at this stage is often to be considered: epidemiological experts 

often tend to look at a large number of details, and simplification is needed. This may 

entail the need to ponder the time constant of the processes involved and ensure that two 

levels of integration (in epidemiology: an epidemic and its underlying processes; in crop 

loss modeling: yield build-up and its determining, limiting, and reducing factors) are 

considered. 

When one is satisfied, overall, with the model behavior, an evaluation phase is 

needed, as discussed above. This enables one of the most interesting outcomes of 

modeling, i.e., scenario analysis. Simulation modeling enables projections in possible 

futures. These futures may be materialized by the driving functions (quite a few plant 

pathologists are involved in climate change research, for instance; Garrett, 2010) or by 

the parameter values. 

Another use of models is to conduct simulated experiments. Luo and Zeng (1995), 

for instance, provide a fine example of such work on components of partial resistance to 

yellow rust of wheat, with strong links with experimental work. 

Model simplification then can lead to important outcomes from the practical 

standpoint. One, of course, is disease management, for which quite a number of models 

have been developed. One of many examples is SIMCAST (Fry et al., 1983; Grünwald et 

al., 2000) for potato late blight. Again, simulation modeling can become a very powerful 

scoping approach. Combining this potato late blight management model with a GIS, 

Hijmans et al. (2000) paved the way towards global geophytopathology and risk 

assessment. This major outcome of decades of research is one example, which should 

encourage plant pathologists and biologists, in general, to engage into a field which, we 

believe, is still full of promises. 
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