Previous View
 
APSnet Home
 
MPMI Home


VIEW ARTICLE   |    DOI: 10.1094/MPMI-3-103


A Gene from Pseudomonas syringae pv. glycinea with Homology to Avirulence Gene D from P. s. pv. tomato but Devoid of the Avirulence Phenotype. D. Y. Kobayashi. Department of Plant Pathology, University of California, Riverside 92521 U.S.A. S. J. Tamaki, D. J. Trollinger, S. Gold, and N. T. Keen. Department of Plant Pathology, University of California, Riverside 92521 U.S.A. MPMI 3:103-111. Accepted 3 November 1989. Copyright 1990 The American Phytopathological Society.


A gene was cloned from Pseudomonas syringae pv. glycinea that hybridized to avirulence gene D (avrD), previously cloned from P. s. pv. tomato. Unlike avrD, the hypersensitive response (HR) was not elicited when the P. s. pv. glycinea gene was reintroduced into P. s. pv. glycinea race 4 on a broad host range plasmid and the bacteria were inoculated into soybean leaves. DNA sequence data disclosed that the P. s. pv. glycinea homologue of avrD encoded a protein containing 86% identical amino acids to avrD, with substitutions distributed throughout the protein. Two ORFs immediately downstream from the avrD homologue were more similar in P. s. pv. tomato and P. s. pv. glycinea, with 98 and 99% identical amino acids. Expression of the wildtype P. s. pv. glycinea gene and recombinant genes constructed between the P. s. pv. tomato avrD gene and its P. s. pv. glycinea homologue in both Escherichia coli and P. s. pv. glycinea indicated that the P. s. pv. glycinea gene product was formed less efficiently or was less stable than was the P. s. pv. tomato protein encoded by avrD. The data indicated that the P. s. pv. glycinea homologue represents a recessive allele of the P. s. pv. tomato avrD gene which has been modified by mutation such that it does not lead to an avirulence phenotype on the normal host plant, soybean.

Additional Keywords: gene-for-gene complementarity.