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Rhizobium bacteria form nitrogen-fixing nodules on legume
roots. As part of the nodulation process, they secrete Nod factors
that are B-1,4-linked oligomers of N-acetylglucosamine. These
factors depend on nodulation (nod) genes, but most aspects of
factor synthesis are not yet known. We show here that one gene,
nodC, shows striking similarity to genes encoding proteins known

to be involved in polysaccharide synthesis in yeast and bacteria,
specifically chitin and cellulose synthases, as well as a protein
with unknown function in Xenopus embryos, DG42. This simi-
larity is consistent with a role for the NodC protein in the
formation of the 8-1,4-linkage in Nod factors.

The formation of symbiotic root nodules on legumes
by Rhizobium bacteria requires the action of Rhizobium
nodulation (nod) genes (reviewed in Long 1989). It is now
known that extracellular bacterial signal molecules are im-
portant for this symbiosis, and production of these factors
depends on the presence and expression of the nod genes
in the bacterium (Faucher ef al. 1988, Van Brussel et al.
1986). The Nod factors are modified oligosaccharides of
B-1,4-linked N-acetylglucosamine and are thus similar to
chitin oligomers (Lerouge et al. 1990). The modifications
include an N-acyl substitution and sometimes a C-6 acetyl
on the nonreducing sugar residue, and a C-6 sulfate on
the reducing end (Lerouge et al. 1990; Schultze et al. 1991;
Spaink et al. 1991; E. M. Atkinson, K. Faull, and S. R.
Long, unpublished observations).

The sequences of numerous nod genes are known. In
some cases, sequence homology has suggested function,
and in others direct biochemical assay has demonstrated
function. The genes studied so far include those for fatty
acid modification, addition of the sulfate and acetyl groups,
as well as the synthesis of glucosamine (Baev er al. 1991;
Roche et al. 1991; Schwedock and Long 1990; Spaink et al.
1991). However, there is currently no biochemical evidence
on the nature of the Nod factor 8-1,4-glucan polymerizing
activity.

We have found that the Rhizobium NodC protein has
striking homology to other proteins known to be involved
in polysaccharide synthesis in yeast and bacteria, speci-
fically chitin and cellulose synthases, as well as a protein
with unknown function in Xenopus embryos, DG42 (Sar-
gent and Dawid 1983). Some of these homologies have
been reported earlier (Bulawa 1992). The sequence simi-
larity suggests to us that NodC could be the synthetic
enzyme catalyzing the 8-1,4-linkage in Nod factor produc-
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tion. If a catalytic domain is the basis for the similarity
of these proteins, then the presence of this domain in DG42
would be consistent with a role in the synthesis of matrix
polysaccharides such as hyaluronic acid. These observa-
tions of sequence similarity provide specific hypotheses that
can be tested biochemically.

We performed sequence alignments on the translation
products of the nodC gene from R. meliloti, pDG42 from
Xenopus laevis (Rosa et al. 1988), the cellulose synthase
gene from Acetobacter xylinum (Saxena et al. 1990), and
the CSD2/CALI gene (Valdivieso et al. 1991; Bulawa 1992)
and the CHS2 gene (Silverman 1989) from Saccharomyces
cerevisiae. The alignments were done with the University
of Wisconsin Genetics Computer Group software, speci-
fically FASTA and BESTFIT (Devereux et al. 1984). Mul-
tiple sequence alignments were performed by the TULLA
program (Subbiah and Harrison 1989). Final alignments
were made by a combination of BESTFIT analysis and
by hand alignment.

We observed substantial similarity of nodC to each of
these genes. NodC shows the best match with the DG42
protein of X. laevis, with which it displays 26.4% overall
identity and 48.8% overall similarity. Ranked in order of
decreasing NodC homology are DG42, cellulose synthase,
CSD2/CALL, and CHS2. DG42 and cellulose synthase
show extended homology to the amino terminus of NodC.
In addition there are four other regions in which all five
sequences are well conserved (see Fig. 1). At amino acids
141-143 of NodC there is an acidic region partly conserved
in other proteins, while beginning at residue 204 there is
a sequence that contains the unusual cysteine cluster that
our group and others have previously noted in NodC
(Jacobs et al. 1985; Long 1991); CHS2 does not have this
cluster but other proteins in the family show it. In addition
there is another region with some acidic character at amino
acids 238-245, and finally a well conserved region at resi-
dues 273-283.

NodC was originally identified based on the requirement
for the nodABC operon in nodulation of alfalfa by R.
meliloti (Debelle et al. 1986; Jacobs et al. 1985, Kondorosi
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et al. 1984). R. meliloti nodC mutants exhibit a Nod™ phe-
notype on alfalfa. NodC has been identified in all Rhi-
zobium species studied to date, and NodC proteins can
functionally complement nodC mutations in other Rhizo-
bium species. It is now known that the nodABC operon
is essential in the production of the modified oligosaccha-
rides known as Nod factors (Lerouge et al. 1990; Spaink
et al. 1991; Schultze et al. 1991; E. M. Atkinson, K. Faull,
and S. R. Long, unpublished observations). All of these
molecules are 8-1,4-linked N-acetylglucosamine. We show
here that NodC is similar to several enzymes involved in
the synthesis of 8-1,4-polysaccharides. The sequence simi-
larity with chitin synthase could be consistent either with
NodC being a synthase, or with its simply having a binding
domain for UDP-N-acetylglucosamine, a probable com-
mon precursor for chitin and Nod-factor synthesis. How-
ever, the fact that NodC is also homologous to a 8-1,4
synthase for at least one other polymer, cellulose, supports
the possibility that the protein conservation relates to the
synthesis of that particular linkage, rather than for the

use of N-acetylglucosamine in particular. This would be
consistent with a role for NodC in polymerization of the
Nod factor backbone.

Chitin is a polymer of 8-1,4-linked N-acetylglucosamine
and, because chitin synthase from yeast has been extensively
studied, there are detailed biochemical and genetic data
concerning this enzyme. There appear to be at least three
chitin synthetic activities in Saccharomyces that have been
localized genetically: CHS1, CHS2, and CSD2 (also called
CALI) (Valdivieso et al. 1991; Bulawa 1992). We previously
observed slight homology between CHS2 and NodC (Long
1991), but the identification of CSD2/CALI1 led to the
examination of these sequences as a group, which revealed
the similarities shown in Figure 1.

Cellulose is a polymer of B8-1,4-linked glucose, and cellu-
lose synthase from A. xylinum has recently been cloned
by two independent groups (Saxena et al. 1990; Wong et al.
1990). The bcsA gene of the cellulose synthase operon
matches the cellulose synthase reported by Saxena et al.
(1990), and it is this protein that has similarities to NodC,
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Fig. 1. Multiple sequence alignment of NodC from Rhizobium meliloti, DG42 from Xenopus laevis, cellulose synthase from Acetobacter xylinum
(Bcs), and two yeast chitin synthases, CSD2/Call and CHS2. The DG42 and cellulose synthase proteins have homolgy to NodC beginning at
amino acid 46 of NodC and extending to amino acid 121. DG42 has a 50 amino acid insert at this point, and then all five peptides show homology
from NodC 128 to 291. Note the cluster of cysteines (boxed) near amino acid 207. In the alignment, “|” denotes two out of five matches, “I”
denotes three out of five, “B” denotes four out of five, and “M” denotes complete identity for this amino acid in all five proteins. Sequences
shown are the complete NodC sequence, the pDG42 gene product sequence from amino acid 98 to 393 (Sargent and Dawid 1983), the cellulose
synthase amino acid sequence from 149 to 384 (Saxena et al. 1990), the CSD2/CALI sequence from 827 to 1008 (Valdivieso et al. 1991, Bulawa

1992), and the CHS2 amino acid sequence from 432 to 617 (Silverman 1989).
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CHS2, and CSD2/CALIL. Saxena et al. believe this to be
the catalytic subunit for cellulose production, based on
N-terminal sequencing of synthase purified by product
entrapment. Other groups (Mayer et al. 1991; Wong et al.
1990) have identified the bcsB gene of this operon as the
catalytic subunit of the synthase. There has been no firm
resolution of this discrepancy.

Of all of the sequences examined so far, X. laevis DG42
best matches the NodC sequence. The DG42 gene was
cloned as a cDNA expressed during Xenopus gastrulation
(Sargent and Dawid 1983). According to immunolocali-
zation, DG42 accumulates to a peak at the mid-gastrula
stage, and decays by the end of neurulation (Rosa et al.
1988). At one point during embryogenesis, DG42 makes
up about 0.2% of the total poly(A)" mRNA in the embryo.
Bulawa (1992) has proposed that the homology of DG42
to NodC suggests involvement of lipo-oligosaccharides as
signals in early vertebrate embryo development. However,
we also note that high concentrations of polysaccharides
such as hyaluronate are often associated with epithelium-
to-mesenchyme transitions, as occurs during gastrulation
(Toole et al. 1984). Because the homologies of this small
family of apparent synthetic enzymes include chitin and
cellulose synthases, which produce matrix-type substances,
we speculate that the DG42 protein may simply be involved
in synthesis of matrix polysaccharides in the developing
embryo. This would be consistent with both the homology
and localization data.

The homologies presented are intriguing. Each of these
proteins is probably a membrane protein, as evidenced by
the extended hydrophobic domains C-terminal to the re-
gions of homology. We have previously noted that NodC
has four putative transmembrane domains (Jacobs et al.
1985). The known requirements for polysaccharide synthe-
sis indicate that a nucleotide-sugar binding domain should
be present, and it will be informative to discover if the
proteins described here will bind nucleotide sugars. Also,
the cluster of conserved cysteines suggests a common do-
main such as a metal-binding region, since it has been found
that cellulose and chitin synthases require divalent cations
for their activity (Cabib et al. 1983; Wong et al. 1990).

There has been one previous proposal for NodC function:
John et al. (1985, 1988) reported that NodC is in the outer
membrane of Rhizobium and suggested that its location
and inferred topology indicate that it functions as a signal
receptor. Based on the homology data presented here, we
propose, by contrast, that NodC functions in the synthesis
of Nod factors. This may occur in a vectorial fashion
through the membrane, as has been shown for some chitin
synthases (Cabib ez al. 1983), or may be cytoplasmic, with
factor export occuring independently. NodC may also inter-
act with other nod gene products such as NodA (Johnson
et al. 1989).

Our results suggest that NodC and the other proteins
belong to an extended family of B-1,4 polysaccharide
synthases from a range of organisms from bacteria to verte-
brates. The function of some of the proteins is well known,
as in the case of chitin synthase (CHS) in yeast, while
some functions can be inferred by genetic analysis, as in
the case of R. meliloti NodC. While the Xenopus DG42
protein has no demonstrated function at this time, the

homology now suggests possible tests for function. This
proposed family will be likely to gain new members as
more genes are discovered in systems that involve poly-
saccharide synthesis.
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