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Formulae for the calculation of rhizosphere widths, w, of
cylindrical host parts and of spherical hosts (seeds) were proposed
by Gilligan (9). Ferriss (7) has recently presented corrected
formulae and has examined some of the factors and assumptions
affecting these estimations of the true values of the rhizosphere
influence on inoculum in cylindrical and spherical infection courts
on hosts. Inaddition to the utility in determining the dimensions of
such rhizospheres, these formulae have been presented as tools to
determine the validity of the distinction between rhizosphere and
rhizoplane phenomena proposed by Baker et al (3).

In this note, we consider the impracticality of these formulae for
calculating rhizosphere widths with the information presently
available in the literature on host-soilborne pathogen relationships.
We also examine the validity of using calculated rhizosphere widths
as a tool for distinguishing between rhizosphere and rhizoplane
phenomena.

Approaches to the calculation of the dimensions of a
rhizosphere. Gilligan’s (9) algebraic expressions for the
rhizospheres of cylindrical and spherical hosts were based not only
on the volume of a cylindrical or spherical shell of propagule-
containing soil around the host, but included the volume of the host
as well. This inclusion of host volume and thus, host dimensions,
led to the possibility of obtaining negative values for rhizosphere
width as pointed out by Ferriss (7). In contrast, Ferriss (7) proposed
algebraic expressions for the rhizospheres equal to cylindrical and
spherical shells around these hosts, containing the inoculum
involved in infection. We concur with Ferriss’ expressions as those
which would represent the volumes within which the propagules of
the pathogen are sufficiently proximal to infect such cylindrical and
spherical host infection courts in idealized cases of rhizosphere
phenomena. If the size of the host were negligible with respect to the
size of the rhizosphere, then the formulae of Gilligan (9) and Ferriss
(7) are equivalent.

Limitations in methodology associated with calculation of the
thickness of cylindrical and spherical shells in characterizing the
dimensions of a rhizosphere influence on inoculum. Clearly the
formulae for cylindrical and spherical shell widths (7) are
dependent on representing a host with idealized dimensions and
would not apply to noncylindrical and nonspherical hosts or
rhizosphere volumes. For example, to conform to the actual
geometry of known relationships for preemergence damping-off
induced by Rhizoctonia solani, a spherical spermosphere
surrounding the spherical host (the seed) would be inappropriate.
Rather, there is an ellipsoidal spermosphere twice as wide in the
equatorial plane as in the vertical plane (2). Also, as Ferriss (7)
indicates, the formulae would underestimate the size of
rhizospheres of cylindrical and spherical host parts where only a
portion of the host is infectible. In contrast, the formulae of Baker
et al (2,3) do not depend on idealizations of host parameters.

Other factors lower confidence in estimates of the extent of the
rhizosphere effect on inoculum. There would be an underestimate
of the volume of soil influenced by the roots if infections per unit
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(calculated from the multiple infection transformation, [4,11])
underestimated the number of hits (infections). as noted by Ferriss
(7). An overestimate of shell width would result if the inoculum
density were underestimated. At present, measurements of
inoculum density in soil are conventionally made by counting
colony-forming units in dilution series. Whether selective or
nonselective nutrient media are used, underestimation of actual
inoculum densities in soil may occur when using such a procedure.
This is especially true with propagules that germinate at low and
variable levels and/or go through a period of dormancy. For
example, Erwin (6) observed about 10% germination of oospores of
Phytophthora megasperma f. sp. medicaginis even on water agar
which does not contain the toxic compounds found in selective
media. However, Kuan and Erwin (15) reported 20% germination
in soil. Baumer (5) also observed 5-10% germination on water agar
although the high incidence of disease obtained with low levels of
oospores indicated a much higher germination in soil. Again, a
number of units of inoculum may be embedded in a single bit of
organic matter but would only yield one colony-forming unit.
Subsequent decomposition of the organic matter, even for brief
periods, can increase the actual number of inoculum and infection
units.

Griffin (12) found by direct microscopic observation that
chlamydospore germination of Fusarium oxysporum, a common
peanut root colonizer, was nearly 100% at the root surface and
decreased gradually to zero at 1.73 mm from the root surface (Fig.
1). That all chlamydospores within the rhizosphere width (1.73
mm) did not germinate (ie, germination was dissimilar or
heterogenous) contradicts the assumptions underlying the
theoretical approach of Ferriss (7). Complete germination (=
100%) and complete infection (= 100% efficiency) by all germinable
or viable propagules within the calculated rhizosphere width is
assumed by Ferriss (7) when competence is equal to 1. The
calculated shell width encompasses a volume of soil which contains
a number of propagules equal to the number which actually infect
the host. This would result in a gross underestimation of the
distance from the root (= rhizosphere width) in which germination
actually occurs (Fig. 1), and obviously limits the utility of such a
calculated distance in rhizosphere biology.

Competence and the importance of a knowledge of efficiencies.
In the equation for calculating the extent of the rhizosphere effect
on inoculum, Ferriss (7) applies a correction factor (C) to the
density. He designates C as “the competence of the pathogen
propagule population.” Competent distance, as defined by Grogan
et al (13), refers to the placement of the propagule so that it *...still
[has] a chance of causing infection.”

We prefer the term “efficiency™ because inoculum efficiency
implies that a measurement can be made of inoculum performance,
whereas competency does not. Therefore, dictionaries use the word
“measurement” in defining efficiency, but it does not appear in the
definition of competency, making the latter term of little use (by
definition) for insertion of values eventually into equations. Thus,
competency refers more to what inoculum should be able to do
rather than what it has done. In Webster, competency is defined as
“means sufficient for the necessities of life.” A synonym is “able.™
An able propagule may infect a root in one soil but not another.
Efficiency is measured after the fact—it is not an estimate of what
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should occur.

With these elements of the definitions in mind and considering
the principle of independent action of propagules elaborated by
Garrett (8) and the “law of the origin™ (when disease is plotted
against inoculum, both on arithmetic scales, the curve starts at the
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Fig. 1. Comparison of a theoretical width of the rhizosphere influence on
propagules (7.9)and that obtained using direct microscopic examination of
Fusarium oxysporum chlamydospore germination on a root slide of peanut
insoil (12). Areas under the curves (= germinating chlamydospores) for the
direct-microscopic-observation curve (—-—) and the theoretical
rhizosphere width curve (——) were equalized using a digitizer planimeter,
This was done since the theoretical approach of Ferriss (7) assumes that all
propagules within the calculated rhizosphere width germinate and infect
roots when competence equals 1. Thus, the theoretical rhizosphere width
(W) for the F. oxysporum-peanut system is 0.64 mm or only 37% of that
found for direct microscopic observation ( W= 1.73 mm), if all germinating
chlamydospores infected the peanut root (= 100% efficiency). If only one
half of the germinating chlamydospores infect the root (= 50% efficiency),
but this is unknown to the researcher (the typical situation [1,17]) the
calculated width (------ ) is only 0.32 mm for the degree of chlamydospore
germination shown here.
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origin) expounded by Vanderplank (18), it is apparent that all
viable inoculum units within the influence of a rhizoplane or
rhizosphere are competent. There is abundant evidence in the
literature by actual measurements (eg, 17), however, that indicates
that all propagules in an infection court do not participate
ultimately in the infection of the host (2). Competency does not
describe this situation. Efficiency does.

We use efficiency to refer to that portion of the inoculum
(propagules) on or adjacent to the infection court which induce
successful infection of the host. Rather than being a constant
correction factor for density, efficiency is more correctly viewed as
a variable, which is dependent (among other things) upon distance
from the host.

It has been pointed out repeatedly (eg, 1,2) that any calculation
of the dimensions of the rhizosphere must involve calculations of
the efficiency of the propagules inducing infection: only a limited
number of studies have reported efficiencies; these differ widely
depending on the pathogen involved (0.27-0.28% for
Cylindrocladum crotalariae [17], 50-919% for Gaeumannomyces
graminis var. fritici [10]), the particular host, environmental
parameters involved, and the techniques employed in
measurement.

The concept of density applied to a random distribution of
discrete objects. In terms of the biology of the prepenetration
process associated with the infection process of soilborne
pathogens, the models (3) describe those systems in which
propagules must touch the infection court in order to breech the
host barrier and induce successful infection. This concept is based
on the mathematics of surface density relationships (14) in which a
point (of contact with the host) touches a plane (the surface of the
infection court). Comprehensive documentation has been
published (3) to demonstrate that such systems do exist and,
indeed, may be the rule rather than the exception.

Much of the criticism (9,13,16,18) of the position of Baker et al
(3) is based on the implicit rejection of the concept of surface
density or the supposition that the stated mathematical
relationship between surface and volume densities applies only to a
tetrahedral distribution. In particular, the procedure of Ferriss (7),
to determine the occurrence of a surface phenomenon is circuitous
unless one rejects the concept of surface density. The procedure
identifies a surface phenomenon in terms of volume density and a
volume having a zero third dimension or shell width, w.
Consequently, we now consider the concept of density as it applies
to a random distribution of discrete objects.

The density of a continuous, uniform material is defined as the
ratio of its mass to its volume. Since mass exists only in volumes,
this density applies only to volumes. In contrast, a random
distribution of discrete objects can also be treated mathematically
as a density. In this case, the subject of the density is not mass, but
the number of objects in the distribution. Their size is not
considered, only their number and location. Thus, by viewing the
random distribution of objects as a locus of points, it is possible to
define density as the ratio of the number of objects to the size of
their locus. The locus may be a curvilinear path through the field of
distribution, a surface in the field, or a volume in the field. Thus,
there are three definitions of density applicable to a random
distribution of discrete objects. These are linear density, surface
density, and volume density. Surface density and volume density
are, respectively, the square and the cube of linear density (14). This
is a direct consequence of the concept of randomness and the
definitions of length, area, and volume (2). Inoculum density (/D)
eg, is the volume density of a random distribution of propagules in
soil. The surface density of propagules in this same distribution is
ID*?, and the number of propagules per curvilinear distance
through the distribution is the linear density, /D' "

Density and the procedure of Ferriss. Ferriss' procedure (7) for
the calculation and use of a shell width, w, is based on some correct
implications of the concept of density as treated immediately
above, but it also contains some incorrect inferences and proposes
some false conclusions.

Ferriss'(7) procedure correctly accepts the premise that a volume



density phenomenon is evident in the direct proportion between an
experimental number, N, and volume density, D,.

N=kD, ()

The constant of proportionality is the apparent volume of the
phenomenon. However, the procedure falsely implies that volume
density has an intrinsic conceptual priority over surface density and
linear density. It is true that we have a predilection for volume
density because of our familiarity with mass density. It is also true
that it is experimentally convenient to identify or prepare a random
distribution in terms of its volume density, eg, as the number of
spores per volume of soil. This does not diminish the fact that the
direct proportion between an experimental number, N, and surface
density, D,, isevidence of a surface density phenomenon, where the
constant of proportionality is the apparent surface area of the
phenomenon.

N=kD, 2)

Equation | has no greater conceptual or experimental validity than
that of equation 2.

Density and limitation. Another correct and truly perceptive
position adopted by Ferriss (7) is the premise that for a volume
phenomenon, the slope of a function with respect to volume density
is a constant at density equals zero. That the slope eventually
decreases to zero with increasing density is evidence of limitation
whether the limitation is exponential or quadratic. Furthermore,
Ferriss correctly identifies the constant, at density equals zero, as
the apparent volume of the phenomenon, comparable to k in
equation I, in which & is the slope of equation 1.

The importance of this facet of the procedure of Ferriss lies in its
being the key to the reconciliation of the views of Vanderplank (18)
and Baker (1). Vanderplank (18) emphasized the fact that a concave
downward curve is concomitant to exponential limitation of a
volume phenomenon.

N: MJ(I P c-a.'n] [3)

It appeared as if this were a mutually exclusive alternative to the
surface equation of Baker et al (3) whichis also concave downward
as a function of /D,

N=kID¥3, 4)

Ferriss has indicated that the derivative with respect to volume
density, at density equals zero, is the constant, k, for equation | and
the constant, aM, for equation 3. Furthermore, these are the
apparent volumes of the phenomena (7). It follows that for surface
density phenomena, the equation showing exponential limitation
is,

N= No(l — e-alD? -‘)’ (5)

The derivatives of equations 4 and 5 with respect to surface density
are, respectively, the constants, k and a Ny, at density equals zero.
These are the apparent surface areas of the phenomena. Thus,
concavity downward alone is not evidence of limitation on the one
hand or of a surface phenomenon on the other. Also, there is no
inherent conflict between the equations of Vanderplank (18) and
Baker et al (3).

Distinguishing a volume from a surface. The cardinal principle
upon which the procedure of Ferriss (7) is based is that a volume
differs from a surface by having one more dimension than a surface
(see the next section for further detail). If one were dealing with a
continuous system, the minimum size of the third dimension,
distinguishing a volume from a surface, would be, in concept,
arbitrarily small and, in practice, the smallest one could measure.
In a discrete distribution system, the minimum size of any
dimension relevant to the distribution must typically include at
least one object of the distribution. A dimension so small that it
does not typically include at least one member of the distribution is
insignificant relative to the distribution. Thus, the conceptual

minimum size of any dimension relative to a random, discrete
distribution is the typical distance between nearest neighbors. This
is the reciprocal of the linear density, or equivalently, the reciprocal
of the cube root of the volume density. In his procedure, Ferriss
mistakenly chose the diameter of a member of the distribution as
the minimum size of a dimension relevant to the distribution. A
length equal to the diameter of a member of the distribution would
typically include at least one, but exactly one, member of the
distribution only if the members of the distribution were
contiguous. Examples of irrelevant and relevant dimensions are:
for D, = 1 object (km) ™, nearest neighbors are typically 1,000 m
apart; a dimension of 10 m is insignificant in this distribution; for
D,=10° objects m™, nearest neighbors are typically | cm apart; a
dimension of 10 ¢cm is relevant to this distribution.

The procedure fails to distinguish volume from surface
phenomena. It is by the algebraic form of a function that one
recognizes a volume or a surface phenomenon. As noted above,
Ferriss (7) lucidly identified volume functions, not simply by the
form of equation 1, but also by the following:

dfiD) = a constant.

dD, |D=0 (6)

Thus, equation 3 is a volume equation.

With this in mind, an examination of Ferriss’ procedure indicates
that it cannot be used to distinguish volume from surface
phenomena. The procedure examines each data set for linearity or
concavity downward as a function of volume density, If a data set is
linear, the set thereby conforms to equation | and no one disputes
this identification as a volume phenomenon. If a data set shows
concavity downward as a function of volume density, the
procedure fits the data to the algebraic form of a volume
phenomenon such as equation 3. By accepting this fit, one is
accepting the proposition that the phenomenon is a volume
phenomenon.

One could support the proposition by showing that a
mathematical deduction from the proposition was in accord with
known facts extraneous to the proposition and to the data set.
Alternatively, one could disprove the validity of the proposition by
a mathematical deduction such as the calculated value of a shell
width, w, if the deduction were based on no further assumption
beyond the proposition and if the deduction were known to be false
when compared with extraneous facts. However, the value of w
calculated by the procedure (7) is based on many assumptions (cf,
the first paragraph of the section titled “Limitations of the
proposed model”). Consequently, the proposition cannot be
disproved by the calculated value of w, because one would not
know whether the proposition or one of the assumptions was false.

What does the calculated value of the shell width, w, of a volume
phenomenon signify? The calculated shell width, w, is the apparent
third dimension characteristic of a volume. For the infection
phenomenon to appear to be a volume phenomenon, the distance
between nearest neighbors (d,) of the experimental distributions
tested, must have been less than w. If the nearest neighbor distance
foradistribution were greater than w, the volume characterized by
w would be too small to be relevant to the distribution. Because d,,
= D' %, the nearest neighbor requirement is fulfilled by inoculum
densities where,

ID>w' (7)

To be consonant with one’s having fitted the data to a volume
equation, the inoculum densities used in the cxpcrimcnt‘musl fulfill
relation 7. If an experimental /D were smaller than w ', one could
conclude that the proposition or at least one of the many
assumptions upon which the calculation of w was based, was
incorrect. Because of this uncertainty, there are no circumstances
under which one could conclude that a surface phenomenon was
involved.

The procedure of Baker et al. The procedure of Baker et al (3) is
in marked contrast to the procedure of Ferriss (7). Baker et al (3)
propose fitting data to the algebraic relation,
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N=kiID'. (8)

Surface and volume relationships are alternatives within equation
8. The results of this fitting have so far fallen into two categories.
One category is of the form of equation 1, ie, in which the exponent
of ID (without synergism [1,18]) is 1. The other category is of the
form of equation 4, in which the exponent of /D is 2/ 3. Such values
have been obtained experimentally. This has been acknowledged
(16). Baker et al (3) properly conclude that data conforming to
equation 4 represent surface phenomena. One cannot deny the
validity of this conclusion while maintaining that data conforming
to equation | represent volume phenomena. The identification of
equation | as a volume equation has no greater validity than the
identification of equation 4 as a surface equation.

It would be appropriate to criticize the approach of Baker et al
(3) on the ground that data sets apparently conforming to equation
4, in reality conform to equation 3. However, this criticism has been
met by showing that as larger values of /D are dropped from
consideration, the remaining data still conform to equation 4 (Fig.
5 in 2). Indeed, if one conjectured that concave downward
curvature as a function of volume density represented exponential
‘imitation, the data should be fitted to an equation of the form,

N= No(l — e—am”)‘ [9)

T'hen, assuming the validity of the conjecture of exponential
limitation, the value of b will be the indicator of whether the
phenomenon is a surface or a volume phenomenon.

Conclusion. The calculation of a minimum rhizosphere width, w,
is not useful in describing the actual dimensions of a biological
rhizosphere influence on inoculum or as a tool in distinguishing
rhizosphere from rhizoplane infection phenomena. Further,
present methodology used to measure actual inoculum density and
other parameters required for obtaining values for use in equations
is not yet sufficiently developed. However, as one in a series
(2,3,7,9,13,16,18) of conflicting viewpoints, it was useful (indeed
essential) to the dialectical development of the subject.

The suggestion to calculate a shell width, w, necessitated an
examination of the principles of density which we have touched
upon in this note. Volume phenomena and surface phenomena are
distinguished by algebraic relationships. Ferriss (7) has incisively
pointed out thatan equation as a function of volume density, whose
slope equals a constant at density equals zero, represents a volume
phenomenon. This leads to a generalization of the algebraic forms
representing both volume and surface phenomena, namely
equation 9, and provides the key to reconciling the equations of
Vanderplank (18) and Baker et al (3).

The close fit of a data set to a volume equation is sufficient
evidence of a volume phenomenon in the absence of evidence to the
contrary. However, if the question is whether a surface or a volume
phenomenon is involved, data should be fitted to algebraic forms
which include both possibilities.

The procedure of Ferriss (7), by fitting data to equations | and 3,
assumes the existence of a volume phenomenon. It then deduces the
value of w to check the assumption. A mathematical deduction,
such as a calculation w, based on the form of the equation fitted to
the data, may be consonant with the choice of the equation for the
fitting. Alternatively, it could be used to disprove the validity of the
choice, if the result is based on no assumptions beyond the original
choice of the equation. However, the proposed calculated shell
width, w, is based on many assumptions (7). Under no
circumstances could one conclude, on the basis of Ferriss’ (7)
procedure, that a surface phenomenon was involved.
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Consequently, the procedure cannot be used to distinguish volume
infection phenomena from surface infection phenomena.

In contrast, the procedure of Baker et al (3) fits data to an
equation (equation 8) which accommodates both volume and
surface infection phenomena. The value of the parameter, b, in
equation 8, as determined by the data, then indicates whether a
volume or surface infection phenomenon was present.

The proper conceptual approach, in disagreeing with the
identification of equations 2 and 4 as surface phenomena
equations, is to offer a different equation in their stead and to
demonstrate the validity of that equation. We maintain that this is
impossible without denying the definitions of length, area, and
volume or without making an incidental error along the way.
Leonard (16), eg, took this proper conceptual approach, but made
an incidental error in calculus by identifying the expression for the
derivative as the differential (2).
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