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ABSTRACT

Thal, W. M., Campbell, C. L., and Madden, L. V. 1984. Sensitivity of Weibull model parameter estimates to variation in simulated disease progression data.

Phytopathology 74:1425-1430.

Sensitivity of estimates of Weibull parameters (a, b, ¢) to alterations in
factors controlled or not controlled by investigators was examined by using
simulated disease progression data generated from the monomolecular,
Bertalanffy-Richards (with shape parameter m fixed at 0.5), Gompertz, and
logistic models. Data were generated using six levels of initial disease
proportion (¥ = 0.0000001, 0.000001, 0.00001, 0.0001, 0.001, 0.01); ten
levels of rho—a common weighted mean rate parameter (rho = 0.008, 0.017,
0.025, 0.033, 0.041, 0.050, 0.058, 0.067, 0.075, 0.083); four data point
spacings; and four final disease levels. The effect of a fixed a-parameter on
estimated c-parameter values was examined. Weibull model parameters
were estimated using nonlinear regression techniques; the Marquardt and
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Gauss-Newton methods proved most suitable. Estimates of a were sensitive
to values of rho when data were generated using the Gompertz and logistic
models and when values of yy were high. Estimates of b were inversely
related to rho and estimates of ¢ were insensitive to changes in rho.
Estimated parameter values for models other than the monomolecular were
sensitive to changes in y;. Reducing the final level of y affected estimates of
¢, the magnitude of the effect increased as the inflection point of the
generating disease progress model increased. Estimates of ¢ were insensitive
to changes in data point spacing but increased as values of a decreased in the
two-parameter model. Estimates of a, b, and ¢ were generally highly
correlated which may indicate overparameterization of the model.

Over the past two decades, disease progress modeling has
become an integral part of the quantitative description of plant
diseases. These quantitative descriptions have contributed
significantly to our understanding of plant pathosystems and their
basic components. Disease progress models have also been used by
plant pathologists to evaluate the effectiveness of fungicides,
disease resistance, and other disease management tactics (13). The
use of flexible models has been suggested for describing disease
progress. Pennypacker et al (9) proposed the use of the Weibull
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function (14) and it was further discussed by Madden (8); Jowett et

al(7)and Madden (8) have also discussed the Bertalanffy-Richards
function (4,10) for use in disease progress modeling. Each of these
models has a parameter that determines inflection point or shape,
in contrast to the exponential, logistic, monomolecular and
Gompertz models that lack this parameter. The additional
parameter allows flexibility in the position of the inflection point
and, thus, the shape of the curve.

In the present paper we examine the usefulness and reliability of
the Weibull model (Fig. 1.) for describing disease progress as
proposed by Pennypacker et al (9). The Weibull model has three
parameters designated in this paper as a, b, and ¢: a is a location
parameter that determines the position of the curve along the
independent or time axis, b is a scale parameter that is inversely
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proportional to the rate parameter of the Bertalanffy-Richards
family of models (10), and ¢ is a shape parameter that determines
the location of the inflection point.

It has been shown empirically that the value of the Weibull
c-parameter can be used to relate a fitted disease progress curve to
either the monomolecular or the logistic growth models (9). The
effect of final disease level on e-parameter estimates has been
discussed briefly (3). The sensitivity of c-parameter estimates to
data-point spacing and to specific combinations of parameter
values of the logistic and monomolecular models has not been
thoroughly investigated.

Our objective was to determine the sensitivity of Weibull
parameter estimates to factors under control of the investigator (ie,
data point spacing and statistical fitting method), and to factors not
controlled by the investigator such as rate parameter, initial disease
level, and final disease level. Generated data were utilized to
minimize variation that could affect parameter estimation and
obscure the relationships being investigated.

MATERIALS AND METHODS

Generation of disease progression data. Disease progression
data were generated by using four forms of the Bertalanffy-
Richards model: the monomolecular, the Bertalanffy-Richards
with shape parameter (m) fixed at 0.5, the Gompertz, and the
logistic (Table 1). The monomolecular and logistic models
correspond to the simple-interest and compound-interest disease
models of Vanderplank (13). The four models have inflection
points (ie, point of maximum rate, dy/dr) at disease proportions ()
ranging from 0.0 to 0.5, and thus cover a broad range of possible
shapes (Fig. 1).

Since the rate parameters from different models are not directly
comparable, a common weighted mean rate parameter, rho (10),
was used in generating disease progress data. This parameter is the
average absolute rate weighted by dy/dr and is defined as rho =
r/(2m + 2) in which r is the rate parameter for the Bertalanffy-
Richards family of curves. The equation r = rho(2m + 2) can be
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Fig. 1. The A, rate function and C, cumulative distribution (disease progress) function for the Gompertz (G), logistic (L), monomolecular (M), and

Bertalanffy-Richards with m = 0.5 (R) models which were used in generating disease progress data. Corresponding Weibull B, rate and D, cumulative
distribution functions are shown.
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:Valuc of shape parameter m (9) or n (8) which reduces the Bertalanffy-Richards model to a model of fixed shape.
Equation to calculate the rate parameter r based on a fixed value of the weighted mean rate, rho = r/(2m + 2).

1426 PHYTOPATHOLOGY



T T T T T T T T T
i Y,=0.01 B Y,=0.0001
0F —m M,R + MR
G G,L
L
_5 - e —
4
_10 = -r— il
-15 | - .
-20 - ax
C D
18 =3 el .
M,R M
- A, R =
.15 G
‘12 ™~ - -
& G
A\ e - -
09 L -
.06 f + <
L
03 = e =
00 E &
E F
6 | T+ L -
5 - -
4 = L o o
) L
3 — . s
G
2 } + .
G
R R
1 ;_ A 1 L _I_M T | [ 1 [ M ]

0.00 0.02 0.04 0.06 0.08 0.00 0.02 0.04 0.06 0.08
RHO RHO

Fig. 2. Relationship between Weibull parameter (@, b, and ¢) estimates and rho for the monomolecular (M), Gompertz (G), logistic (L), and Bertalanffy-

Richards with m = 0.5 (R) models: A, a versus rho, yy=0.01; B, a versus rho, yp=0.0001; C, 1 / b versus rho, yo=0.01 (regression equations were G — y = 1.7 Lx,
L—y=0.99x, M—y=2.00x,and R—y=2.01x); D, |/ b versus rho, yo=0.0001 (regression equations were G — = 1.30x, L= y=0.61x, M — y=2.00x,and R
— v = 1.87x). E, ¢ versus rho, yo= 0.01; and F, ¢ versus rho, yy = 0.0001. Final disease proportion was 0.99.
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used to determine the appropriate r for a specified member of the
Bertalanffy-Richards family (as determined by m) and a given rho
(Table 1).

Ten values of rho were used to determine specific rate parameter
values for each of the four models (Table 2). Disease progress
curves with 21 evenly spaced data points were then generated for
each of these rates. Six levels of initial disease, as represented by
parameter y,, were used in generating disease progress curves to
determine the effect of initial disease level on Weibull parameter
estimates. Four final levels of disease proportion (y,= 0.25, 0.50,
0.75, and 0.99) were used to examine the effect of shortened

epidemics (which could occur when an epidemic is ended due to
harvest) on Weibull parameter estimates. The effect of data point
spacing was investigated by generating disease progress curves with
data points spaced at 5-, 7- and 10-day intervals. The conditions
used in generating the disease progress data are summarized in
Table 2.

Use of the two-parameter Weibull model. In a separate study, the
location parameter, a, was fixed to values of —10, =5, =3, —2, and
—1totest the effect of a fixed location parameter on the estimated ¢
value. This was done because it is easier computationally to fit a
nonlinear model with two parameters than with three, and because
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Fig. 3. Relationship between Weibull parameter estimates and vy for monomolecular (M), Gompertz (G), logistic (L), and Bertalanffy-Richards withm=0.5
(R). A,a versus yg, rho = 0.025; B, a versus vy, rho = 0.066; C, b versus vy, rho =0.025; D, b versus vy, rho = 0.066; E, ¢ versus vg, rho=0.025; and F, ¢ versus vy,

rho = 0.066. Final disease proportion was 0.99.
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correlations were high among parameter estimates in the three-
parameter model, indicating possible overparameterization.

The SAS nonlinear regression procedure NLIN (11,12) provided
least squares estimates of the Weibull parameters for the disease
progress data. The same initial estimates were used for all
regressions. The Marquardt, Gauss-Newton, gradient, and DUD
(derivative-free) methods were initially used in computing
parameter estimates (11,12). The Marquardt method was used in
the reported results unless otherwise indicated.

RESULTS

Effect of rate parameter on Weibull parameter estimates. The
relation between the rate parameter of the data-generating model
and the estimated Weibull parameters is plotted for two values of y,
in Fig. 2. The location parameter, a, decreased sharply for low
values of rho with y; = 0.01 when data generated by the logistic
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Fig. 4. Effect of final disease level on Weibull ¢ estimates for
monomolecular (M), Gompertz (G), logistic (L), and Bertalanffy-Richards
m=0.5(R). Maximum disease is the level at which the epidemics ended. vy
= 0.001. rho = 0.50.
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model were used. There was also a decrease in @ with y, = 0.0001;
due to the scale, however, it is not visible on the graph. The
parameter b was inversely related to rho, but the relationship
generally depended on y,. Changes in the rate parameter had little
effect on the estimates of ¢.

Effect of initial disease value on Weibull parameter estimates.
The initial level of disease, vy, had an effect on estimated parameter
values for models other than the monomolecular (Fig. 3). The
estimates were most sensitive to changes in y, for data from the
logistic model and only slightly sensitive for data from the
Bertalanffy-Richards model with m = 0.5. Values of y, near 0.01
had the most influence on a. The effect of y; on estimates of a
decreased with increasing values of rho. There were large increases
in estimates of both b and ¢ as y, values decreased.

Effect of final disease level on Weibull ¢ estimates. The effect of
final disease level on estimates of ¢ increased as the inflection point
of the generating model increased (Fig. 4.). This effect was similar
to that of decreasing y,. The ¢ value was insensitive to final disease
level for disease progress curves generated from the
monomolecular model and changed very little for the Bertalanffy-
Richards model with m = 0.5. With the Gompertz model and, to a
greater extent, with data generated from the logistic model, final
disease level affected the value of ¢.

Effect of data point spacing on Weibull ¢ estimates. Disease
progress data generated with points spaced at 5-, 7-, and 10-day
intervals gave similar estimates of the Weibull ¢-parameter. As
expected, epidemics were too short in duration to provide enough
points for parameter estimation when r was very high, so all
comparisons could not be made.

Effect of estimation method. Four estimation methods:
Marquardt, Gauss-Newton, gradient, and DUD (derivative-free)
were compared for ability to give consistent parameter estimates.

TABLE 2. Parameter values of disease progress models used in generating
disease progress data

Values

0.008, 0.017, 0,025, 0.033, 0.041,
0.050, 0.058, 0.067, 0.075, 0.083.

0.0000001, 0.000001, 0.00001, 0.0001,
0.001. 0.01.

5-, 7-, and 10-day intervals
0.25, 0.50, 0.75. 0.99.

Parameter

Rate parameter, rho
Initial disease proportion, vy

Data point spacing
Final disease level, y,
Fixed values of Weibull @
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Fig. 5. Frequencies of Weibull ¢ parameter estimates for 10 values of rho obtained by using the Marquardt (MQ), Gauss-Newton (GN), gradient and
derivative-free (DF) estimation methods. v, = 0.001. A, Estimates for logistic-generated data and B, estimates for Gompertz-generated data. Final disease
proportion was 0.99. The gradient method failed to converge for two of the data sets generated from the Gompertz model.
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Histograms of c-values for logistic (Fig. 5A) and Gompertz (Fig.
5B) data with y, = 0.001 indicate that the Marquardt and Gauss-
Newton methods gave the most consistent estimates. These
methods gave almost identical estimates for all conditions tested.
Estimates obtained using the gradient and DUD methods were not
consistent for changes in rho and sometimes gave estimates with
large standard deviations. It may have been possible to get better
estimates with these methods if more attention was given to the
starting values of the parameters. The Marquardt method was used
since it gave good estimates without requiring undue attention to
starting values.

Correlation of Weibull parameter estimates. The estimates of a,
b, and ¢ were highly correlated, with most correlation coefficients
greater than 0.999. Parameters b and ¢ were positively correlated;
parameter ¢ was negatively correlated to both b and c.

Estimates of ¢ in the two-parameter Weibull model with fixed a.
The value of the fixed location parameter, a, had an effect on ¢ for
all data-generating models when the two-parameter Weibull model
was fit to the generated disease progress data. There was a linear
increase in ¢ as a decreased (Fig. 6).

DISCUSSION

The Weibull model is a flexible model that may offer an
improved fit to disease progression data compared with the more
commonly used two-parameter models. While two-parameter
models are desirable due to their simplicity and ease of
interpretation, it is not realistic to assume that all disease progress
curves will have the same inflection point. The Gompertz model
(inflection point at 0.37) often provides a better fit to disease
progress data than the more commonly used logistic model (1,2).
Campbell, et al (5) have shown that the best-fitting model for
tobacco black shank epidemics varied from one epidemic to
another. Evidence of a wide range of inflection points in disease
progress data was also indicated for bean hypocotyl rot for which
Weibull c-parameter estimates ranged from 1.8 to 9.2 (6). The
Weibull model offers a continuous range of inflection points and
thus provides an alternative to choosing different models for
different epidemics.

The extremely good fits that were consistently obtained by using
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the Weibull model on simulated data and on field-collected data (5)
make it well-suited for describing disease progress. The parameters
correspond to well-defined, epidemiologic concepts, allowing use
of the Weibull model for comparative purposes. It also provides a
convenient form for representing the data of a disease progress
curve and for utilizing these data in models at a higher level of
organization, eg, economic or crop loss models incorporating
disease information.

The problems of extreme sensitivity to initial disease and to
censoring of the data make it necessary to exercise caution when
using the Weibull model in a comparative or inferential role since
these factors are likely to vary and are generally not controlled by
the investigator. The reason for the sensitivity to initial disease
appears to be due to the high negative correlation between a and c.
Final disease level appears to be most critical when it is below the
inflection point.

The high correlations among parameter estimates observed
when using the three-parameter Weibull model suggest that it may
often be desirable to use the two-parameter form of the model. If
the three-parameter form is used, and correlations are high, it must
be realized that parameter estimates will have large confidence
regions.

Our results should help investigators to assign a disease progress
curve to one of the less flexible growth models if this is the intended
purpose; however, due to the extreme sensitivity seen under some
conditions we feel that investigators should simply use the Weibull
model directly as a model of disease progress. Examination and
comparison of untransformed biological data (ie, disease progress
curves) may give more insight into the biological operations and
interactions occurring during epidemics than can be gained by
using transformed data. Experience with the Weibull model may
lead to a more thorough understanding of the biological
significance of the parameters in specific interactions.
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