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ABSTRACT

van den Bosch, F., Zadoks, J. C., and Metz, J. A. J. 1988. Focus expansion in plant disease. 11: Realistic parameter-sparse models. Phytopathology
78:59-64.

In a previous paper, a model was presented applicable to the expansion contact distribution, a concept analogous to the primary gradient of a
of plant disease foci. The model permits calculating the velocity of focus focus. The production of infectious units as a function of the time after
expansion and the slope of the focal front in a few seconds of infection is described by a shifted gamma density. These submodels are
microcomputer time. In this paper, a parameter-sparse and yet sufficiently shown to fit some published data sets. With the resulting model, the effect
flexible subclass of models is considered that can easily be adapted to of various parameters of contact distribution and time kernel submodels on
various pathosystems. A mechanistic submodel is introduced for the the velocity of the expanding focus and the slope of its front was
dispersal of infectious units, based on turbulent diffusion inside the canopy investigated.
and random interception of infectious units by host plants. It describes the

Additional key words: contact distribution, epidemic wave, gross reproduction, spore dispersal, time kernel.

In a previous paper (2), a general model for the spatial spread of gamma density to describe spore production during the infectious
an infectious disease was discussed, following Diekmann (4,5) and period. The effect of various parameters in the submodels on the
Thieme (19,20). That model, which is a spatial variant of the wave velocity, c, and the shape parameter, X, will be investigated.
Kermack & McKendrick model (9,16), can be applied to the Symbols are explained in Table 1.
development of foci in agricultural pathosystems. After a phase of
focus buildup, a focus initiated by a single infectious unit will CONTACT DISTRIBUTION
expand radially in wavelike fashion (19). The velocity of the wave
will approach a constant value, c, called the asymptotic wave In dense agricultural crops such as rice or wheat, the movement
velocity. The front of the wave, expressed in terms of density of of infectious units is the result of air turbulence within the canopy
diseased individuals, has an exponential shape characterized by a boundary layer. It is assumed that all infectious units are equally
shape parameter X. mobile and move at random. Therefore, the distribution of those

Two equations were derived to calculate c and X from three units that are not yet trapped follows a Gaussian density with a
features of the pathosystem: the contact distribution (D (5)), variance that increases linearly with time,
characterizing inoculum dispersal; the normalized time kernel (i (r)),
describing the relative rate of inoculum production; and the gross
reproduction (-ySo), which is the number of daughter lesions per
mother lesion in an otherwise uninfected field, including multiple
infections.

As an example, wave velocities were calculated for a time kernel TABLE 1. List of symbols
with fixed latency period (p), fixed infectious period (i), and
constant spore production during the infectious period. In other Symbol Explanation Dimension
words, the time kernel was a block function. The contact /3 Constant of gamma density [T-]
distribution was assumed to be Gaussian. This example is a spatial c Asymptotic wave velocity [LT-]
variant of Vanderplank's (23) equation, introduced in a simulation -YSo Gross reproduction [I]
context by Kampmeijer and Zadoks (7). In reality, inoculum F(n) Gamma function [2]
production is not constant throughout the infectious period. It D°(x) Probability distribution of daughter lesions on
starts slowly, reaches a peak, and tapers off to zero (5,8,11,12,15). transect through source [IL-']
In addition, measured contact distributions are more peaked than D(x) Marginal distribution of contact distribution [IL']
the Gaussian distribution (13,14,22,25). 6 Probability of interception [T-,]

Obviously, a more realistic model is needed, as Minogue and Fry i(T) Time kernel [F-']
(17) also stated. Therefore, a family of models will be treated that is i Infectious period [T]
both sufficiently parameter-sparse to be manageable and X Shape parameter of wave front [L-']
sufficiently flexible to cover many real-life situations. For the A Mean of infectious period [T]
contact distribution, a mechanistic submodel will be introduced n Constant of gamma density [I]
based on random movement of infectious units and random V Variance of time kernel [T2]
interception by host individuals. For the time kernel, a descriptive p Latency period [T)

aI Variance of D°(x) [LT
submodel will be introduced using a fixed latency period (p) and a G22 Variance of D(x) [L2]

W_ Diffusion constant [L'T-1]
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X2+ 22 =: 2
exp [ + ] (2.1) 91 2 a2. (2.6)

27rcTr 2tor
The contact distribution can be determined by counting

where wv is the rate of increase of the variance. Infectious units are daughter lesions at various distances from a mother lesion (or a
intercepted by suscepts and nonsuscepts alike. We assume that this group of closely packed mother lesions taken as a point source)
happens with a probability 6 per unit of time. Therefore, the time to before the granddaughter lesions become apparent. If a point
trapping is exponentially distributed with rate parameter 6, source is used, the density of daughter lesions on a transect through

the source follows the Bessel distribution (Eq. 2.4). If a line source
6 exp [-6 r]. (2.2) is used, the density of daughter lesions along a transect

perpendicular to it follows the double-exponential distribution

(In general, the mean free lifetime of an infectious unit (6-1) will be (Eq. 2.5).

short relative to the infectious period. This enables us to describe In Figure 1, data on rice blast (Pyricularia oryzae (Cav.)) from

disease transfer in terms of two separate functions, a contact MacKenzie and Villareal (13,14) are shown together with a Bessel

distribution and a time kernel.) distribution fitted by eye. To this end, various values of the

The final distribution of trapped spores, the contact parameter a1 were used in conjunction with tables (1) until a

distribution, is given by multiplying equation 2.1 with equation 2.2 reasonable value was found.

and integrating with respect to r. Finally, putting T' = c07, and
immediately dropping the suffix node again, we arrive at: TIME KERNEL

00 2 2 For the time kernel, recourse is taken to a descriptive model. The
D(xi, x2) f 1 exp [-r - x• ± x2 ]dr. (2.3) submodel should describe a latency period, p, and a smooth and

2irrw/ 6 r 2r7W/6 flexible, humplike inoculum production curve covering the
infectious period. The so-called shifted gamma density satisfies

This so-called Bessel distribution was first derived by Williams these demands:
(27) and Broadbent and Kendall (3) in a different but comparable
context. Usually data are given as measurements along a transect (0 if r < p
through the point of inoculation. The distribution along such a i(7) =t (3.1)
transect (corresponding to the distribution of one coordinate, Xl, 83(/(r - 1 p))nI exp (-/3(r - p)) if 7 > p.
conditional on the other coordinate, X2, being zero) is: 1F (n)

1 0= 1 1 X 2
DO(xi) f i exp [-7- 1 L ]dT (2.4) F(n) is the Gamma function, tabulated in several textbooks (e.g.,

2rra 1 o T e 20"', r [1]); n and /3 are constants. The mean of the time kernel is p + /i,
where bi is the mean time required to produce a randomly selected

where O = co/ 26 is the variance of Do. Note that Do (xi) is here a spore after the latency period, /ui n/f8. The variance, V2, of the
one-variable function. The Bessel distribution is more peaked than time kernel equals n/3p2 .
the Gaussian distribution (Fig. 1). Measurements of the latency period and the inoculum

The marginal distribution, derived from equation 2.3 using production during the infectious period are available from the
equation 3.1 from (2), which is needed to calculate c and ,X (2), is the literature (5,8,11,15,27). Figure 2 shows examples of Gamma
double exponential distribution: distributions eye-fitted to published data. Evidently, equation 3.1

provides a fair description of the time kernel.

D(xi) = 2/•2 exp [-\'-2 Ix, i] (2.5)
02 0I WAVE VELOCITY AND SHAPE OF THE WAVE FRONT

2where o2 equals the variance of D(xi) and a, and 02 are related by The shape of the epidemic front (3,4,19,20) is described by the

equation:

So - S(t, x) 0c exp X (ct - x1) (4.1)

where So - S(t, x) is the density of victims at time t and position
x, c is the asymptotic wave velocity, and X is the shape parameter.
For an explanation see van den Bosch et al (21). Both c and X can

0 be calculated (21). Technical details are given in an appendix to this
paper.

The parameters of the model can be taken together in
c5-0 dimensionless (also called scaled) parameters (see the appendix):

4-4
0 C i/G2 [LT-]• [T]/[L] [1] (4.2.a)

E 3-* = Xa 02 [L-']. [L] [I] (4.2.b)

2 p = P/P, [T]/[T] = [I] (4.2.c)

"/* [T]/[T] [I]. (4.2.d)

0 100 200 300 400 In statistical literature, v/lbi is called the coefficient of variation.
distance from source (cm) Figure 3 depicts the dependence of the scaled wave velocity and the

Fig. 1. Contact distribution of rice blast (Pyricularia oryzae) on rice (dots). scaled shape parameter on the gross reproduction, ySo, and the
Data from MacKenzie (14). Solid line is Bessel distribution (Eq. 2.1). coefficient of variation, for various values of the scaled latency
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period. The dependence of the scaled wave velocity on the scaled SO D (X ) = YSO /2  exp [-\2 Ixi]
latency period is shown in more detail in Figure 4. When, for 2 2
example, the scaled wave velocity matching a certain ySo and v/llj 02 02

is found in the graph, c can be calculated from c = c* U2/1li. As a measure of the effect of a distant source, consider the effective
The larger the gross reproduction, the larger is c, an effect that distance beyond which the number of daughter lesions per unit of

can be understood intuitively. Except for -ySo near unity, c distance decreases below a value K.
increases nearly logarithmically with y So. This can be explained by
the following argument. Consider the effect of a line source parallel
to the front of the wave. The number of new victims (daughter YSo O(Xeff) = K X- xef = ½ \/ 21n ½_ . (4.3)
lesions) per unit of distance (perpendicular to the line source) at a
distance xi from the source is

The effective distance, which is a measure of the distance covered
by one generation, increases logarithmically with ySo. In this light
a logarithmic dependence of c on 'ySo is to be expected.
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Fig. 2. Observed time kernels (dots). Solid lines are delayed Gamma Fig. 3. Asymptotic wave velocity (c*) and wave-front slope parameter (X\*)
densities (Eq. 3.2). A, Brown rust (Pucecinia recondita) on wheat seedlings, as function of gross reproduction (-ySo) and variation coefficient of
Data from Mehta and Zadoks (16). B, Rice blast (Pyricularia orvzae) on infectious period. Solid lines: c* = Cti/ 02. Broken lines: X* = X02. A, p/il =
rice at various temperatures (QC). Data from Kato and Kozaka (9). 0.0; B, p//-- 0.5; C, p/#M = 1.0.
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Contrary to the opinion of Vanderplank (24) and MacKenzie the infectious period. The concomitant lower rate of inoculum
(13), but consistent with the results of Minogue and Fry (17), production in a later stage of the infectious period has less effect, as
Figure 3 shows that X decreases with decreasing -ySo. Minogue and the earliest inoculum yields "interest" soonest.
Fry (17) argue that this flattening is somehow related to the age With small V2, the slope of the wave front does not depend on
distribution of the lesions, but the relationship is not clear. Our latency period p, whereas the wave velocity does. If P 2

, ,ySo, and a
results do not yet give more insight into this problem, and further are kept constant and p + /i is doubled, the wave velocity is halved;
research is needed. but as the reproduction time is doubled, the wave travels the same

The contact distribution is characterized by one parameter, oa. distance per generation in both cases and the shape of the wave
From equation 4.2.a it is seen that the wave velocity increases front remains unchanged.
linearly with a, as found by Minogue and Fry (17). When the
diffusion constant co increases or when the chance of interception DISCUSSION
per unit of time, 6, decreases, the infectious units will disperse over
larger distances; a will be larger and, consequently, c will be larger. In phytopathological literature, it is customary to describe the

From the system of equations in the appendix it can be seen that primary gradient, a concept analogous to contact distribution, by
,"* = XC <\ 2. No wave front can be steeper than exp ((-/ 2/ simple equations such as those introduced by Gregory (6) and
a)x), which is the slope of the contact distribution. The shape Kiyosawa and Shiyomi (10). These models lack a mechanistic
parameter (X) depends inversely on the variance of the contact basis, in contrast to dynamic simulation models describing the
distribution. When a2 increases, the contact distribution flattens dispersal of inoculum within a canopy (18). Such simulation
and the slope of the front decreases. The existence of such a limit is models often are too complex and time-consuming for studying
a peculiarity of the exponential and some other contact spatial spread of epidemics, and they are not well suited for
distributions. If the contact distribution is, for example, Gaussian studying the relationships between model parameters. The Bessel
there is no such restriction on the steepness of the wave front. distribution introduced here tries to strike a balance. It is

The time kernel is based on three parameters, so that relations mechanistic, simple, and explicit. At first sight its fit to empirical
become rather complex. Figures 3 and 4 show that the latency data seems to be at least as good as the fit of the Gregory or
period p has a marked influence on the wave velocity, as Minogue Kiyosawa and Shiyomi model.
and Fry (17) also found. Long latency periods produce, as is Many phytopathological models for epidemic spread use a time
intuitively understood, low wave velocities, but the relationship is kernel, implicit in the Vanderplank (23) equation, with fixed
nonlinear. latency period, fixed infectious period, and constant inoculum

An increase of the variance of the infectious period (vi2) at a fixed production rate. Experimental data indicate that such models are
mean (/.ti) causes an increase in wave velocity. A decrease of the too simple. Since the Diekmann and Thieme model allows any
mean at fixed variance has the same effect (Fig. 3). As Figure 5 time kernel, we introduced the shifted Gamma density as a flexible
shows, both the increase of the variance and the decrease of the description of the time kernel that is adequate for practical
mean result in higher production of inoculum at the beginning of applications.

The relationship between the asymptotic wave velocity c, the
shape parameter of the wave front X, and various model
parameters was studied in this paper, and results were interpreted
intuitively. Though the spatial distribution of disease can be

t A understood better by applying the present model, it does not yet tell
0*1 A the whole story. Every parameter is a function of environmental

4- 1.0 factors, as, for example, the temperature dependence of the latency
period. Eventually, such relationships can be incorporated into the

S=.model so that the effect of temperature on c and X can be studied.
Our efforts show that the Diekmann and Thieme model can be
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adapted to plant/ pathogen systems in a reasonably simple manner. For chosen values of c, a, and p, X can be solved numerically using
All necessary variables and functions can be measured. In a third Newton-iteration. -ySo is then found from equation A. l.a.
paper we shall compare the performance of the model with The lines of equal X of Figure 3 were calculated by solving
experimental data. equation A. .b for c.

-b± b b2 -4ad

2a
APPENDIX

where
The asymptotic wave speed, c, and the wave slope parameter, A,

are the solutions of the system in equation 3.2 with equations 3.3 XP
and 3.4 in van den Bosch et al (21). For the time kernel (Eq. 3.1)and a= -- (½ - 1), b=A 2( 1. + ½p + '), d A.
the contact distribution (Eq. 2.5) introduced in this paper, we find: a a

_S0 e -"x D (x)dx = '/ (1/u2) _ e -(x+,/-5-2)Ixj) dx Since a < 0, only c is positive. -ySo is found by substituting c_ in

0 o0 equation A.l.a.
1/2 V ,2(I/o2 e +(v'(/ \)x dx + f '.(20a2)X dx To calculate Figure 4, we first multiplied equation A. l.b with A

0 and subtracted equation A. la, giving_0"2

lnySo-ln(1- 2X
2)-aln( C___ + 1)- X_ + c 0.

a I-A _ I/
l- '/2 (XaC2) 2  a

(note that X < \/2/U2 because otherwise the integral on the left is For fixed c, ySo, and a, A can again be calculated numerically

divergent) and using Newton-iteration. p is found then from:

fe_`,T i(T)dr= fln f e- (r--P)f-exp (--3(r - p))dr = A _ 1
0 2X(n) C (l-½V 2) a +

- e-'T f e-(,\(+P)T'(r)- dr, = e-,'
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