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ABSTRACT

Ferriss, R. S., and Berger, P. H. 1993. A stochastic simulation model of epidemics of arthropod-vectored plant viruses, Phytopathology 83:1269-1278.

A generalized theoretical model was developed of the spread of a virus
from a single source plant in a small field. Input parameters include
probabilities of virus acquisition and inoculation, lengths of latent periods
in the plant and vector, length of the vector infectious period, number
of vectors per plant, and the amount of vector movement. Decisions
about acquisition, inoculation, and vector movement are made on the
basis of the values of pseudorandomly selected numbers. Output includes
numbers of viruliferous vectors and positions of infected plants at each
iteration. Simulation runs were performed for viruses with four generalized
types of vector transmission: nonpersistent, semipersistent, circulative,

and propagative. Model predictions were generally consistent with ex-
pected natural spread. Results of simulation runs illustrated the great
effects that the amount of vector movement can have on disease dynamics
and spatial distribution, particularly for diseases transmitted in a non-
persistent manner. The model will be difficult to fully validate; however,
it provides a logically rigorous way of integrating knowledge about the
many processes that affect virus disease epidemics and may be useful
in the development of methods of analysis and in the development of
less complex models.

Most plant viruses are vectored by arthropods, particularly
aphids and leafhoppers. The dynamics of a particular virus disease
epidemic depend on a number of factors, such as the number
of vectors and their activity, sources of virus and vectors, climatic
conditions, and a complex series of virus-plant-vector interactions
(1,17,36,39,50,53,56). Although much is known about some of
these interactions, relationships among the various factors affect-
ing epidemics are far from clear. This is partly due to the difficulties
inherent in monitoring viruses and vectors in the field and partly
due to a lack of clear, testable hypotheses about the expected
effects of transmission characteristics on epidemics.

Numerous techniques have been used in the management of
plant virus diseases (16,23,40,52,57); however, many of them have
inconsistent efficacy and/ or economic justification. Much current
work is being directed toward increasing the genetic resistance
of plants to virus diseases. At present, however, predictions of
the effects of altering cultural procedures or resistance charac-
teristics on field epidemics are more rightly considered to be
guesses than to be logical conclusions.

Methods for the interpretation of spatial data have received
a great deal of attention in recent years (4,19,31,45,47,48,54). This
general interest has been reflected in an interest in spatial aspects
of plant diseases (3,8,10,18,19,24,25,41,55). Early analyses of
spatial data from plant virus epidemics concentrated on the in-
terpretation of disease gradients (12,13,51). More recent work
has applied a variety of methods to plant virus disease data sets,
including runs analysis, autocorrelation, and quadrat-based analy-
ses (11,26-30). The unavailability of suitable data sets has been
a major obstacle to progress in this area. Repeatedly assessing
the infection status of all plants in even a small plot is extremely
labor intensive. Furthermore, temporal variations in weather,
vector populations, and plant susceptibility add to the difficulty
of discerning relationships between epidemic behavior and funda-
mental biological processes.

Computer simulation provides a logically rigorous way to inte-
grate knowledge about the many processes that contribute to
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virus disease epidemics. A number of simulation models of plant
virus diseases have been developed (1,7,9,14,21,32,35,42). How-
ever, most of these models have been designed to simulate specific
diseases, particularly those caused by nonpersistently transmitted
viruses, which have no latent period in the vector and a short
retention period. Few models of plant virus diseases have incor-
porated a spatial dimension. Some models of the spatial dynamics
of nonviral plant diseases have been developed (20,33,34,44,46),
but these do not take into account the many unique properties
of virus diseases. Recently, Monestiez et al (35) reported on a
model that stochastically simulates a nonpersistent virus that is
being continually introduced into a field.

The generalized simulation model of the spread of plant virus
diseases that is described herein was developed as an illustrative
tool for a review article (2). A preliminary report has been pub-
lished (6). In this paper, we describe the structure of the model
and the assumptions on which it is based, variability of simulation
results, limitations of the model, methods for interpretation of
data obtained from the model, and some of the effects of input
parameter values on simulated epidemics.

MATERIALS AND METHODS

Assumptions and parameters. The model simulates the spread
of disease from a single infected plant in a field containing 425
plants (17 rows X 25 columns). The field is assumed to be isolated
from other sources of virus; possible movement of the virus into
or out of the field is ignored. The number of vectors is constant,
and no provision is made for vector reproduction. Input param-
eters specify probabilities of acquisition and inoculation, durations
of plant and vector latent periods, duration of the vector infectious
period, the number of vectors per plant, and the amount of vector
movement (Table 1). All periods begin and end in a discrete
manner (e.g., a vector becomes fully able to transmit a virus
once the vector latent period has passed, rather than gradually
increasing in ability to transmit). Once they become infectious,
plants remain so for the rest of the epidemic; there is no allowance
for remission or effects of plant age. All decisions based on prob-
abilities are made by comparison of a specified probability with
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TABLE I. Input parameters and state variables used in a stochastic simulation model of plant virus diseases

Parameter Standard® Definition
Input parameters ] ) e ) ] .
Acquisition probability 0.5 Probability that a vector will acquire virus from an infectious plant that it resides on during an iteration.
Inoculation probability 0.5 Probability that an infectious vector will inoculate a noninfectious plant that it resides on during an
iteration.
Plant latent period 8 Length (in iterations) of the period between inoculation of a plant and its becoming able to serve as a virus
source.
Vector latent period v Length (in iterations) of the period between acquisition of virus by a vector and its becoming able to
transmit virus. o
Vector infectious period v Length (in iterations) of the period during which a vector is able to transmit virus.
Number of plants 425 Total number of plants in the simulated rectangular field.
Vectors per plant 1 Number of vectors per plant.
Movement probability 0.8 Probability that a vector will move from the plant it currently resides on during a movement iteration.

Probability of movement to each of the four adjacent plants is (1—MoveProb)/4.

Moves per iteration |

Number of vector movement iterations during one overall iteration. MoveProb is used to make a decision

on movement for each movement iteration.

State variables
Latent plants
Infectious plants
Infected plants
Latent vectors
Infectious vectors
Viruliferous vectors

Number of latently infected plants.

Number of plants able to serve as a source of virus.

Total number of latently infected and infectious plants.

Number of vectors that have acquired virus but have not yet become infectious.
Number of vectors able to transmit virus.

Total number of latent and infectious vectors.

*Standard values were used in simulation runs unless otherwise noted. v = Parameters were varied with transmission type.
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Fig. 1. Flow chart of decisions made for each vector during procedure
VectorActions.
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Fig. 2. Illustrations of procedure VectorMovements. A, Flow chart of
decisions made for each vector; B, representative vector movements from
plant a to plant d during one iteration for a model specifying three
movements per iteration. In each of the three moves, the vector could
have remained on the plant it was on or moved to any one of the four
adjacent plants, depending on the value of a pseudorandom variable.
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a pseudorandom value obtained from a mixed congruential gen-
erator. For example, if the specified acquisition probability is
0.75, then a pseudorandom value of <0.75 will result in a decision
for acquisition. There are two steps in each calculation made
by the generator: 1) a new seed value is calculated as (25,173
* OldSeed + 13,849) mod 65,536; and 2) the new seed is divided
by 65,536 to give a value between zero and one. During a simu-
lation run, this calculation is performed each time that a decision
requires a pseudorandom value. Multiple runs with the same
values of input parameters and a specified group of starting seed
values are performed to obtain pseudoblocking (22).

Model structure. Epidemic behavior is simulated by two pro-
cedures: VectorActions and VectorMovements. In each iteration
of a simulation run, procedure VectorActions is implemented for
each vector, and then procedure VectorMovements is imple-
mented for each vector. Decisions are made on whether each
vector will acquire or inoculate virus in procedure VectorActions
(Fig. 1). For each vector, a record is maintained of the position
of the plant on which it currently resides, whether or not the
vector is viruliferous, and the iteration numbers on which it first
and last acquired virus. To simulate possible multiple acquisitions
by individual vectors, the start of an infectious period (i.e., the
end of a vector latent period) is determined by the iteration number
of the first acquisition during the current period that a vector
is viruliferous, whereas the end of an infectious period is de-
termined by the iteration of the last acquisition. For each plant
that is infected, a record is maintained of the iteration number
on which it was inoculated. In procedure VectorMovements, de-
cisions are made on the movement of each vector to other plants
(Fig. 2). In the simulations discussed here, vectors move in a
random walk manner. Whether a vector will move during an
iteration is determined by the movement probability. If the value
of a pseudorandom number is greater than the specified movement
probability, then the vector does not move. If the value is less
than the movement probability, then the vector moves one plant
in a direction determined by the magnitude of the value, with
the probabilities of movement in each of the four cardinal direc-
tions being equal. For example, if movement probability is 0.80,
then values of 0.80-1.00 result in no movement, values of 0-0.20
result in movement to the left, and values of 0.20-0.40 result
in movement down. For each vector during each iteration, this
movement decision is made for a specified number of moves per
iteration. A vector does not have any interactions with plants
that it temporarily occupies during an iteration. If a vector moves
to a position outside the simulated field, it is replaced by a vector
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Fig. 3. A, Dynamics of infected plants and classes of vectors during simulation runs for a propagative virus with two movements per iteration,
acquisition probability of 0.9, and other parameters at standard values, B, Relationships between number of “lost” viruliferous vectors and number
of infected plants for s1mulatmn runs of a propagative virus with specified values of movements per iteration (Moves), acquisition probability (AcqP),

and inoculation probability (InocP), and other parameters at standard values.

that enters from the opposite side of the field. The new vector
is nonviruliferous even if the one moving outside is viruliferous.
This procedure simulates a field that is part of a larger one but
does not strictly simulate a real situation, since viruliferous vectors
can be lost. In order to allow assessment of whether the loss
of vectors is too great to produce a satisfactory simulation, a
count is maintained of the number of “lost” vectors (viruliferous
vectors that have moved outside the field).

The model has been implemented in Pascal on Apple Macintosh
and IBM PC-compatible microcomputers.

RESULTS

Evaluation strategy. Model evaluation consisted of 1) assess-
ment of the limits of the model and the amount of run-to-run
variability, 2) evaluation of measures of model behavior, 3) assess-
ment of the effects of input parameters, and 4) development of
simplified representations of model behavior. Values were selected
that approximate virus diseases characteristic for four general
transmission types: nonpersistent (zero and one iterations for
vector latent and infectious periods, respectively), semipersistent
(zero and two), circulative (one and eight), and propagative (six
and 32). Other parameters were varied one or two at a time for
each of these four basic types. Standard values were used for
the parameters that were not varied. Values of starting seeds for
the random number generator were selected from a random
number table and were used repeatedly to provide pseudoblocking.
At least 10 replicate simulation runs were conducted for each
combination of input parameters that was examined. The time
step represented by each iteration was considered to be 1 day.

Limitations of the model. In order to determine the spatial
and temporal limits of the model, simulation runs were performed
with input parameter values that were expected to result in a
large number of lost vectors. For most parameter combinations,
lost vectors increased only after the number of infected plants
had increased to more than 30 of the 425 plants in the field;
however, when a propagative virus was combined with a relatively
large amount of vector movement, a high acquisition probability,
and a low inoculation probability, vectors were lost early in the
simulation (Fig. 3). In order to avoid such invalid simulations,
most analyses concentrated on phases of simulated epidemics
during which there were fewer than 30 infected plants and excluded
some propagative simulation runs.

Run variability. In order to evaluate variability among simu-
lation runs, runs were performed for selected parameter sets with
a total of 100 starting seed values selected from a random number
table. In general, mean numbers of infected plants for runs with
the 10 standard starting seeds were within the 95% confidence
interval calculated for 100 runs, which indicated that general be-
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Fig. 4. Effects of number of replicated simulation runs on the mean
iteration number at which at least 10 plants were infected for four sets
of input parameter values. Unless noted, input parameters were at standard
values.
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Fig. 5. Class distributions of the number of iterations to 10 infected plants
for 100 simulation runs of each of three sets of input parameter values.
Classes are five iterations wide. Unless noted, input parameters were at
standard values.

havior was well-predicted by the standard runs. However, for
a few parameter sets, means for 10 runs were slightly outside
means for 100 runs. For most parameter sets, the mean iteration
at which at least 10 plants were infected (Iter10) with 10 replicates
was within four iterations of the mean for 100 replicates; the
mean Iterl0 for 20 replicates was always within two iterations
of the mean for 100 replicates (Fig. 4). Distributions of Iterl0
were asymmetrical for parameter sets with a low mean Iterl10
value, and variances increased with mean Iter10 value (Fig. 5).
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Infection progress. In order to summarize infection dynamics,
regression models of the Richards family were fitted to data for
the number of infected plants. When the asymptote was fixed
at 425 (the total number of plants), both the logistic and Gompertz
models fitted infection progress well when equations were fitted
iteratively with SAS PROC NLIN (43). When equations were
fitted by linear regression on Logit- or Gompit-transformed data,
the Gompertz model fitted data for most parameter sets better
than did the logistic model (Fig. 6).

Effects of parameter values. The effects of varying the values
of input parameters were examined for sets of runs that rep-
resented each of the four transmission types. Iter10 was signifi-
cantly affected by both transmission type and variation in any
of the other five input parameters (Fig. 7, Table 2). Significant
interactions with transmission type occurred only for acquisition
probability and inoculation probability and were due to a greater
effect of varying these parameters for the nonpersistent and semi-
persistent transmission types. The number of infectious vectors
at 10 infected plants (Vectl0) was affected by acquisition
probability, inoculation probability, and the number of vectors
per plant. Transmission type had a marginal effect on Vectl0,

and plant latent period and number of vector movements per
iteration had no significant effects. The number of horizontal
runs of infected plants when 10 plants were infected (Runl0)
was affected primarily by transmission type and the number of
vector movements per iteration, with marginal effects of inocu-
lation probability and plant latent period. The effects of com-
binations of values of acquisition probability and inoculation
probability varied greatly with transmission type (Fig. 8). For
the nonpersistent and semipersistent transmission types, reduction
of both acquisition probability and inoculation probability to
0.10 greatly increased Iterl0; effects of this reduction were much
less pronounced for the circulative and propagative transmission
types. Although the effects of varying acquisition probability and
inoculation probability were similar, reductions in acquisition
probability generally resulted in a slightly greater increase in Iter10
than did similar reductions in inoculation probability.

Multiple regression. Multiple regression was used to develop
models that predicted the behavior of simulated epidemics from
values of input parameters. For each of 216 combinations of
input parameters, means for 10 replicate simulation runs were
calculated for Iterl0, Vectl0, and Runl0. A “basic” model was
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Fig. 6. Results of fitting logistic and Gompertz regression models to disease progress data by means of linear regression A, on transformed data
or B, by means of a nonlinear, iterative method. Data are means from 10 replicated simulation runs for a circulative virus with standard parameter
values except plant latent period = 16 iterations. SSE = the error sum of squares for comparison of nontransformed observed and predicted values.
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derived that included each of the seven main input parameters
or their inverses for each of these three dependent variables.
Additionally, “best” models that included interaction terms were
selected by use of stepwise multiple regression on the basis of
coefficients of determination, R? and total squared error,
Mallow’s Cp (5). Preliminary analyses indicated that a double-
log transformation of Iter10 {log[log(Iter10)]} and a single-
log transformation of Vectl0 [log,(Vect10)] resulted in con-
sistently better fits. Log transformations had little effect on the
fitting of models to Runl0 data. For Iter10 data, all of the seven
input parameters had a significant effect in the basic model (Table
3, Fig. 9). The best model contained nine independent variables
that included various combinations of the seven input parameters
but had only marginally better fit than did the basic model (Table
4). For Vect10 data, moves per iteration and plant latent period
had no significant effect in the basic model. The best model
contained seven independent variables, with vector latent period
not a part of any term. For Runl0 data, acquisition probability,
vectors per plant, and plant latent period had no significant effect

in either the basic or best models. Although it contained only
four independent variables, the best model for Run10 had a slightly
better fit than did the basic model.

Relationships between numbers of infectious vectors and plant
infection. In order to evaluate how well increases in plant infection
can be predicted from numbers of infectious vectors, the change
in the number of infectious plants was calculated for the first
10 pairs of iterations past Iter10 in each of 10 replicate simulation
runs. Linear correlation was used to compare this change in plant
infection with the number of infectious vectors at previous iter-
ations. In general, correlations were strongest when change in
infection was compared with the number of vectors at a lag of
cight iterations, equivalent to one plant latent period (Fig. 10).
Correlation coefficients increased with inoculation probability.
For the circulative and propagative transmission types at high
inoculation probability, correlation coefficients were significant
for a range of lags, probably due to the long retention periods
of these types. Correlation coefficients for the nonpersistent and
semipersistent transmission types were generally significant only

TABLE 2. Results of F tests from analyses of variance of the effects of parameter level and transmission type on number of iterations to 10 infected
plants, and numbers of viruliferous vectors and number of runs of infected plants when 10 plants were infected *

Dependent variable

F value for effect of parameter levels on dependent variable®

Transmission Level X

Parameter® Nonpersistent ~ Semipersistent ~ Circulative ~ Propagative Overall type* transmission type*®
Number of iterations
to 10 infected plants
Acquisition probability 60,97+ 44.75%%* 41.66%** 18.53%4+ 158.52%%% 144, 7*** 2.48%*
Inoculation probability 96.32%** 79.15%%* 37.18%*x 16.67*** 207.55%** 24].24%%* T.25%%+
Plant latent period 10.25%** 25.28%%= 21.98#+* 11.54%#* 65.42%*% 158.39%*= 1.31ns
Vectors per plant 3B.36%** 21.27%%* 22.48%*% 12.84%** 90.82%*+* 129.58*#* 1.37ns
Movements per iteration 10.69%*# 5.98%+* 7. 71%%% 4.23%* 25.58%4* 04, 16%** 1.01ns
Number of infectious vectors
at 10 infected plants
Acquisition probability 10.58%** 1212084 2.69* 4.83%* 26.67%** 3.88* 1.18ns
Inoculation probability T.23%%% 6.89%%* 8.8(*** 8.61%** 29.16%** 4.69** 0.79ns
Plant latent period 2.25ns 1.6ns 2.14ns 0.58ns 2.19ns 8.35%** 1.46ns
Vectors per plant 12.74%%% 19.42%** 8.89%** Q.42%%* 47.36%** 5.42%% 1.00ns
Movements per iteration 0.77ns 0.77ns 0.34ns 0.14ns 1.00ns 5.36%* 0.34ns
Number of runs of infected plants
at 10 infected plants
Acquisition probability 1.59ns 0.41ns 0.06ns 1.45ns 0.04ns 60.51%%* 1.16ns
Inoculation probability 0.63ns 1.21ns 3.54%* 2.42ns 4.69%* B1.73%%* 1.03ns
Plant latent period 2.56* 0.64ns 0.89ns 0.74ns 1.28ns 65.78%*% 1.19ns
Vectors per plant 1.74ns 0.29ns 2.06ns 0.73ns 0.58ns 66.70%** .41 ns
Movements per iteration 12.13%*+ 22.24%%* 14.49%*# 2.70* 42.60%** 31.70%» 2.99%+

*Each line represents results of an analysis of variance of data from 10 replicate simulation runs

for each level-transmission type combination.

Data for iterations to 10 infected plants were subjected to a double log {loge[logo(x)]} transformation to reduce heterogeneity of variance.

b

Levels of the parmeters were 0.1, 0.3, 0.5, 0.7, and 0.9 for inoculation probability and acquisition probability; 4, 6, 8, 12, and 16 iterations for

plant latent period; 1, 2, 3, and 4 vectors per plant; and 1, 2, 3, and 4 movements per iteration.
“ The effects of the levels of the parameter for each of the four transmission types and the effect of levels of the parameter over all four transmission

types.
“The overall effect of transmission type.

¢ The effect of the interaction between transmission type and parameter level.

" ns = Not significant at P> 0.05; *, **, and *** = significant at 0.05= P> 0.01, 0.01 = P> 0.0001, and P < 0.0001, respectively.
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Fig. 8. Effects of combinations of values of acquisition probability and inoculation probability on the number of iterations to 10 infected plants.

All other input parameters were at standard values.
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for an 8-day lag.

Infection gradients. With most parameter sets, infected plants
were clustered around the initially infected plant. Gradients were
steepest with the nonpersistent and semipersistent transmission
types and most shallow with the propagative transmission type

TABLE 3. “Basic” multiple regression models using parameter levels to
predict number of iterations to 10 infected plants, and numbers of virulif-
erous vectors and runs of infected plants when 10 plants were infected*

Dependent variable
Parameter

Coefficient + SE

t for Hu:

coefficient = 0"

Logo[(Log;o(number of iterations
to 10 infected plants)]®

Intercept —0.0935 + 0.0128 =T 3pres
1/Inoculation probability 0.0105 + 0.0005 20.28%**
1/ Acquisition probability 0.0126 =+ 0.0004 28.25%%*
1/Vectors per plant 0.0718 £ 0.0090 7.94%**
1/ Moves per iteration 0.0479 £ 0.0044 10.80*%**
Plant latent period 0.0055 £ 0.0010 5.74%%%
Vector latent period 0.0043 =+ 0.0007 6.15%**
1/ Vector infectious period 0.0964 £ 0.0046 20.99***
Log;o(number of infectious vectors
at 10 infected plants)*
Intercept 1.1709 £ 0.0536 21.83%*
1/ Inoculation probability 0.0322 £ 0.0022 14.48%+*
1/ Acquisition probability —0.0393 £ 0.0019 —20.61%**
1/ Vectors per plant —0.4125 + 0.0378 —10.90***
1/Moves per iteration 0.0319 £+ 0.0186 1.71ns
Plant latent period —0.0040 £ 0.0041 —0.98ns
Vector latent period —0.0085 £ 0.0030 —2.86ns
1/ Vector infectious period —0.1681 + 0.0193 —B.69*+*
Number of runs of infected plants
at 10 infected plants®

Intercept 9.1704 + 0.3922 23.38%**
1/Inoculation probability 0.1013 £ 0.0163 6.23%%%
1/ Acquisition probability —0.0179 £ 0.0139 —] 25 ree
1/Vectors per plant —0.3129 £ 0.2766 —1.13%%#
1/ Moves per iteration —3.5894 £ 0.1360 —26.40%**
Plant latent period 0.0058 =+ 0.0296 0.20ns
Vector latent period 0.2239 £ 0.0216 10.34%%*
1/ Vector infectious period —1.3364 + 0.1415 —0.45%**

* Data were means from 216 simulated epidemics representing all trans-
mission types. Parameters included in the models were selected from
among simple parameters and their inverses. For iterations to 10 infected
plants and number of infectious vectors, R is the proportion of non-
transformed variance explained by the model (model sum of squares
divided by total sum of squares).

"ns = Not significant at P > 0.05; *, **, and *** = significant at 0.05
= P>0.01,0.01 = P>0.0001, and P = 0.0001, respectively.

¢ R*=10.9050; R™ = 0.8155.

4 R*=0.8189; R™ = 0.8220.

(Fig. 11). Increasing acquisition probability steepened gradients,
and increasing the number of vector movements per iteration
made gradients more shallow (Fig. 12).

Runs of infected plants. Numbers of runs of adjacent plants
were similar when the counts were made horizontally (along the
rows of the simulated field) or vertically (down columns). The
number of runs of infected plants was well below the level that
would be predicted for a random distribution for the standard
parameter sets of all four transmission types (Fig. 13). For similar
numbers of infected plants, the number of runs was consistently
greatest for the propagative transmission type and least for the
nonpersistent and semipersistent transmission types (Fig. 14).
Increasing acquisition probability resulted in small decreases in
numbers of runs for both the nonpersistent and propagative
transmission types (Fig. 15A and B). Increasing the number of
vector movements per iteration had a much greater effect; if two
or more movements were specified for the propagative trans-
mission type, the number of runs approached that expected with
a random distribution (Fig. 15C and D).

Time to infection. Plotting the average number of iterations
until infection against distance from the initially infected plant
gave near-linear relationships for standard parameter sets of all
four transmission types (Fig. 16). Increasing acquisition prob-
ability tended to decrease the intercept of these straight lines for
both the nonpersistent and propagative transmission types and
decreased slopes for the nonpersistent transmission type (Fig. 17A
and C). Increasing the number of vector movements per iteration
had more of an effect on slope than on intercept; slopes ap-
proached zero for the propagative transmission type with three
or four movements per iteration (Fig. 17B and D).

DISCUSSION

In general, the relative effects of different parameter values
in simulation runs were consistent with what would be expected
from an informal consideration of the system. Epidemics pro-
gressed more rapidly when there were more vectors, when there
was a greater amount of vector activity, when the plant latent
period was shorter, or when probabilities of inoculation or acqui-
sition were higher. Plant latent period and vector activity had
little or no effect on the number of infectious vectors per infected
plant. The amount of spatial aggregation, as measured by runs
of infected plants, was strongly affected only by transmission
type and the amount of vector activity. The similarity of these
results with common sense evaluations indicates that the simu-
lation model is a basically valid representation of actual epidemics.
However, the more complex predictions of the model, such as
those involving time to infection and specific combinations of

© R? = 0.8690. input parameter values, are not intuitively obvious.
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infected plants. Diagonal lines represent a I:1 correspondence. Fitted models are presented in Table 3.
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A simulation model can be considered to represent a body
of scientific theory (37). The formalization of knowledge in simu-
lation models may be necessary for significant progress to be
made in our understanding of complex systems such as plant
virus epidemics. However, as the amount of detail in a model
increases, so does the difficulty of validation (15,49). For the
model that we developed, it may not be possible to accurately
estimate the values of the input parameters that are needed to
perform runs simulating a particular field situation. Thus, it may
not be possible to fully test the validity of the model by performing
simulation runs with values of input parameters that have been
measured in a field situation and then comparing field results
with results of the simulation. It is difficult to measure acquisition
and inoculation probabilities under controlled conditions; pro-
ducing accurate estimates of their values in actual field situations

may be impossible with current techniques. Similarly, it is very
difficult to keep track of individual vectors in controlled-release
field dispersal experiments; documenting the movements of all
individuals within a naturally occurring vector population may
be impossible. These problems bring into question the value of
the model, since it cannot be validated by comparison with obser-
vations of actual epidemics. However, it may be possible to
validate the model in a general manner, concentrating on the
comparison of generalized model predictions with the behavior
of epidemics among which only a few input parameter values
are known to vary.

The slow progress of many simulated epidemics of nonpersistent
viruses is an apparently counterintuitive result of the simulation
runs, since many nonpersistent viruses can cause devastating
epidemics (38,40). However, a closer examination of the results

TABLE 4. “Best” multiple regression models using parameter levels to predict number of iterations to 10 infected plants, and numbers of virulif-

erous vectors and runs of infected plants when 10 plants were infected®

Dependent variable parameter

Coefficient + SE t for Hy;: coefficient = 0°

Logyg[(Logo(number of iterations to 10 infected plants)]®
Intercept
1/(Vectors per plant X moves per iteration)
Plant latent period/acquisition probability
Plant latent period/inoculation probability
Inoculation probability X acquisition probability
Vector latent period
Vector infectious period
1/(Vectors per plant X vector infectious period)
1/(Inoculation probability X acquisition probability)
Plant latent period/ vectors per plant

Logo(number of infectious vectors at 10 infected plants)*
Intercept
Vectors per plant X acquisition probability
Plant latent period/acquisition probability
1/(Vectors per plant X vector infectious period)
1/(Inoculation probability)
Inoculation probability
1/(Vectors per plant X moves per iteration)
Vector infectious period

Number of runs of infected plants at 10 infected plants®
Intercept
1/Moves per iteration
Vector infectious period
Vector latent period
Inoculation probability

0.1197 £ 0.0183 6.54%%*
0.0511 £ 0.0041 [2,55%%*
0.0011 £ 0,0001 11.03#%#**
0.0009 £ 0.0001 B.12%**
—=0.0710 £ 0.0119 —5.96%**
0.1087 £ 0.0278 3.9 %=
—0.0218 £ 0.0058 —3.77%*
0.0432 £+ 0.0146 2.95%+
0.0004 £ 0.0002 2,73
0.0013 £ 0.0008 1.65ns
0.6410 £ 0.0353 18.16***
0.2535 £ 0.0183 13.83%%*
—0.0027 £ 0.0003 —10.14%*=*
—0.1741 £ 0.0173 —10.07%**
0.0199 * 0.0033 6.07%**
—0.1586 £ 0.0407 —3.90%**
0.0585 £ 0.0161 3.62%*
—0.0017 £ 0.0005 —3.26%*
7.8601 = 0.1811 43.4]%**
—3.4273 £ 0.1270 —27.00%**
0.5358 + 0.0537 0,98%%*
—2.3313 + 0.2708 —8.6]1%**
—1.3870 £ 0.1935 —T7.17%%*

*Data were means from 216 simulated epidemics representing all transmission types. Parameters included in the models were selected from amon,
simple parameters, their inverses, and combinations of parameters. “Best” models were selected on the bases of coefficient of determination (R%)
and total squared error (Cp). For iterations to 10 infected plants and number of infectious vectors, R is the proportion of nontransformed variance
explained by the model (model sum of squares divided by total sum of squares).

®ns = Not significant at P> 0.05; *, **, and *** = significant at 0.05= P> 0.01, 0.01 = P> 0.0001, and P < 0.0001, respectively.

© R? =0.9202; R™* = (.8382; Cp = 8.4.
“R?=10.8712; R =10.8831; Cp = 3.7.
® R?=0.8776; Cp = 4.5.
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Fig. 10. Effects of lag on correlations between the change in the number of infectious plants and the number of infectious vectors at earlier iterations.
Each data point represents the correlation coefficient from 10 iterations in each of 10 replicate simulation runs (» = 100) with a plant latent period
of eight iterations, other standard parameter values, and inoculation probabilities (Inoc Prob) of A, 0.10, B, 0.50, and C, 0.90. Dashed lines represent

standard limits for significance at P = 0.05, 0.01, and 0.0001.
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indicates that simulated epidemics of nonpersistent viruses may
simply have been more strongly affected by values of input vari-
ables. Compared with the other transmission types, simulated
nonpersistent epidemics were more affected by variations in vector
numbers and activity and probabilities of acquisition and inocu-
lation (Figs. 7 and 8). If high values were specified for all of
these input parameters, then simulated nonpersistent epidemics
progressed about as quickly as those of the other types. In actual
field situations, devastating epidemics of nonpersistent viruses

may be due to influxes of large populations of infectious vectors
and/or to very frequent vector-movements situations that are not
directly addressed by the current model.

The model described here has a number of inherent limitations,
including small field size, a limited possible number of vectors,
and a static vector population. Although additional simulation
runs could be conducted with the current model and further
analyses of existent data sets could be undertaken, further develop-
ment of the model should probably be done with a new imple-

mentation. If the source code were rewritten, comparisons of
results of the old and new models could be used to detect errors,
new features could be incorporated, and the code could be made
to be more easily modified. Improvements might include addi-
4 tional parameters, variable probabilities of acquisition and inocu-
lation, larger field size, more realistic simulation of vector
populations (including reproduction, development, death, and
. immigration), the ability to conduct large batches of simulation
runs, and improved recording of output data. If the code for
the simulation were separated from the code for the user interface,
. models could be produced that are easily transported between
computer hardware platforms. Since we are not able to continue
work on the model, we hope that others will continue its devel-
. opment.

Models such as the one we developed appear to be poorly
suited to producing accurate predictions about field epidemics;
however, we believe that they are a necessary intellectual exercise,
and they may be a useful tool in the development of simplified
models that can be applied to the field. Unless we consider all
aspects of a disease system at one time, we cannot hope to
understand the complete meaning of any particular piece of in-
formation. Even though models such as the one we developed
cannot be validated in the usual manner, they provide a logically
rigorous way of integrating knowledge about the many processes
that affect virus disease epidemics.

T T T T T T
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Fig. 11. Relationships between percentage of infection and distance from
the initially infected plant for four virus transmission types using standard
input parameter values. Percentages of infection are averages of the four
cardinal directions for 10 replicate simulation runs at the first iteration
on which at least 20 plants were infected.
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