Laboratoire de Pathologie Végétale, INRA, BP 01, F-78 850 Thiverval Grignon, France
ABSTRACT
A model was developed and used to study the consequences of diversity for aggressiveness within pathotypes on pathogen evolution in two-component and four-component cultivar mixtures. It was assumed that, within a pathotype, a proportion of the isolates would have higher or lower spore efficacy than the average on a given host genetic background. Two situations were examined in which the pathogen can have either independent or negatively correlated values for spore efficacy on different cultivars. In the latter case, a pathogen genotype more aggressive than the average on a host genotype was always less aggressive on other host genotypes. In the simulations, isolates with greater aggressiveness relative to a host genotype were selected for and increased in frequency. However, because simple pathotypes always reproduced on the same host genotype whereas complex pathotypes were able to grow on several hosts, selection was faster for simple pathotypes. Pathotypes with two different levels of diversity for aggressiveness were compared with nondiversified pathotypes. In order to make comparisons, the effect of a 5 and 10% cost of virulence on the development of complex pathotypes was simulated. In general, increased diversity within pathotypes reduced the rate of increase of complex pathotypes in host mixtures, and this effect was stronger with greater frequencies of autodeposition of pathogen spores.