September
2009
, Volume
99
, Number
9
Pages
1,037
-
1,044
Authors
Matthew D. Robbins,
Audrey Darrigues,
Sung-Chur Sim,
Mohammed Abu Taher Masud, and
David M. Francis
Affiliations
All authors: Department of Horticulture and Crop Science, The Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691; and fourth author: Horticulture Research Centre, Bangladesh Agricultural Research Institute, Joydebpur, Gazipur-1701, Bangladesh.
Go to article:
RelatedArticle
Accepted for publication 29 April 2009.
Abstract
ABSTRACT
Bacterial spot of tomato is caused by four species of Xanthomonas. The accession PI 128216 (Solanum pimpinellifolium) displays a hypersensitive reaction (HR) to race T3 strains (predominately Xanthomonas perforans). We developed an inbred backcross (IBC) population (BC2S5, 178 families) derived from PI 128216 and OH88119 (S. lycopersicum) as the susceptible recurrent parent for simultaneous introgression and genetic analysis of the HR response. These IBC families were evaluated in the greenhouse for HR to race T3 strain Xcv761. The IBC population was genotyped with molecular markers distributed throughout the genome in order to identify candidate loci conferring resistance. We treated the IBC population as a hypothesis forming generation to guide validation in subsequent crosses. Nonparametric analysis identified an association between HR and markers clustered on chromosome 11 (P < 0.05 to 0.0001) and chromosome 6 (0.04 > P > 0.002). Further analysis of the IBC population suggested that markers on chromosome 6 and 11 failed to assort independently, a phenomenon known as gametic phase disequilibrium. Therefore, to validate marker-trait linkages, resistant IBC plants were crossed with OH88119 and BC3F2 progeny were evaluated for HR in the greenhouse. In these subsequent populations, the HR response was associated with the chromosome 11 markers (P < 0.0002) but not with the markers on chromosome 6 (P > 0.25). Independent F2 families were developed by crossing resistant IBC lines to OH8245, OH88119, and OH7530. These populations were genotyped, organized into classes based on chromosome 11 markers, and evaluated for resistance in the field. The PI 128216 locus on chromosome 11 provided resistance that was dependent on gene dosage and genetic background. These results define a single locus, Rx-4, from PI 128216, which provides resistance to bacterial spot race T3, has additive gene action, and is located on chromosome 11.
JnArticleKeywords
Page Content
ArticleCopyright
© 2009 The American Phytopathological Society