ABSTRACT
Several soybean (Glycine max) cropping sequences were planted for 12 years in a field that, at the beginning of the test, was infested with race 14 of the soybean cyst nematode, Heterodera glycines. Continuous soybean cropping sequences included H. glycines-susceptible cultivars Forrest, J82-21, Peking × Centennial breeding line, and moderately resistant cultivars Bedford and J81-116. Forrest treated with aldicarb or pentachloronitrobenzene (PCNB) plus metalaxyl and resistant breeding line JS83-236 followed by resistant cultivars Cordell and Hartwig were additional continuous soybean sequences. Rotations included two sequences each of Bedford with J81-116 or J82-21, and three sequences of Bedford with corn (Zea mays) and susceptible Essex soybean. Rotations of Bedford, corn, and Essex had 12-year mean yields significantly greater than continuous Bedford or Forrest. The female index (FI) of H. glycines on five cultivars and lines was used to bioassay changes in parasitic potential in each cropping sequence. The FI on Bedford bioassay plants increased significantly over time for all field treatments involving Bedford. When J82-21 was the bioassay plant, FI decreased significantly in treatments involving Bedford. There were no significant changes in FI for any treatment when Forrest, J81-16, and Peking were used as bioassays. Rotations of soybean cultivars with different sources of resistance and rotations of resistant and susceptible cultivars with a nonhost crop were not successful practices to manage the nematode's ability to parasitize the resistant cultivar Bedford. However, rotation of resistant and susceptible cultivars with a nonhost crop produced greater mean soybean yields and slowed the shift toward greater parasitism of the resistant cultivar sufficiently to warrant adoption of this practice.