Authors
Stefan
Kurze
and
Hubert
Bahl
,
University of Rostock, Institute of Molecular Physiology and Biotechnology, Microbiology, D-18051 Rostock, Germany
;
Robert
Dahl
,
Strawberry Farm Rövershagen, Dorfstraße 2, D-18182 Purkshof, Germany
; and
Gabriele
Berg
,
University of Rostock, Institute of Molecular Physiology and Biotechnology, Microbiology
ABSTRACT
To develop a biological control product for commercial strawberry production, the chitinolytic rhizobacterium Serratia plymuthica strain HRO-C48 was evaluated for plant growth promotion of strawberries and biological control of the fungal pathogens Verticillium dahliae and Phytophthora cactorum. In phytochamber experiments, treatment with S. plymuthica HRO-C48 resulted in a statistically significant enhancement of plant growth dependent on the concentration of the bacterium that was applied. In greenhouse trials, bacterial treatment reduced the percentage of Verticillium wilt (18.5%) and Phytophthora root rot (33.4%). In three consecutive vegetation periods, field trials were carried out in soil naturally infested by both soilborne pathogens on commercial strawberry farms located in various regions of Germany. Dipping plants in a suspension of S. plymuthica prior to planting reduced Verticillium wilt compared with the nontreated control by 0 to 37.7%, with an average of 24.2%, whereas the increase of yield ranged from 156 to 394%, with an average of 296%. Bacterial treatment reduced Phy-tophthora root rot by 1.3 to 17.9%, with an average of 9.6%, and increased strawberry yield by 60% compared with the nontreated control. Under field conditions, strain HRO-C48 survived at approximately log10 3 to 7 CFU/g of root in the strawberry rhizosphere at 14 months after root application. Although results of the field trials were influenced by pathogen inoculum density, cropping history of the field site, and weather conditions, S. plymuthica HRO-C48 successfully controlled wilt and root rot of strawberry.