Authors
K. S.
Kim
,
Department of Agronomy
;
S. E.
Taylor
,
Department of Agronomy
;
M. L.
Gleason
,
Department of Plant Pathology
; and
K. J.
Koehler
,
Department of Statistics, Iowa State University, Ames 50011
ABSTRACT
The ability of empirical models to enhance accuracy of site-specific estimates of leaf wetness duration (LWD) was assessed for 15 sites in Iowa, Nebraska, and Illinois during May to September of 1997, 1998, and 1999. Enhanced estimation of LWD was obtained by applying a 0.3-m height correction to SkyBit wind-speed estimates for input to the classification and regression tree/stepwise linear discriminant (CART/SLD) model (CART/SLD/Wind model), compared to either a proprietary model (SkyBit wetness) or to the CART/SLD model using wind speed estimates for a 10-m height. The CART/SLD/Wind model estimated LWD more accurately than the other models during dew-eligible (20:00 to 9:00) as well as dew-ineligible (10:00 to 19:00) periods, and for the period 20:00 to 9:00 regardless of rain events. Improvement of LWD estimation accuracy was ascribed to both the hierarchical structure of decision-making in the CART procedure and wind speed correction. Accuracy of the CART/SLD/Wind model identifying hours as wet or dry varied little among the 15 sites, suggesting that this model may be desirable for estimating LWD from site-specific data throughout the midwestern United States.
Additional keywords:
disease warning system,
integrated pest management,
weather models