Link to home

Spatial Association and Distribution of Beet necrotic yellow vein virus and Beet soilborne mosaic virus in Sugar Beet Fields

June 2003 , Volume 87 , Number  6
Pages  707 - 711

F. Workneh , E. Villanueva , K. Steddom , and C. M. Rush , Texas Agricultural Experiment Station, Bushland 79012



Go to article:
Accepted for publication 26 January 2003.
ABSTRACT

Beet necrotic yellow vein virus (BNYVV) causes rhizomania of sugar beet (Beta vulgaris), which is characterized by stunting, leaf necrosis, constriction of the taproot, and extensive lateral- and feeder-root proliferation. Beet soilborne mosaic virus (BSBMV) causes similar but typically less severe symptoms than those of BNYVV. Both viruses are widely distributed in sugar beet-growing regions of the United States. Both viruses are vectored by the soilborne plasmodiophorid Polymyxa betae Keskin and are very similar in morphology and biology, sharing many characteristics in common. In 1999, soil samples were collected from sugar beet fields in Colorado, Minnesota, North Dakota, and Texas to determine the spatial association and covariation of the viruses in sugar beet fields. In 2000, additional samples were collected from fields in Minnesota and North Dakota. Over the 2-year period, soil samples were collected from 11 fields in various quadrat sizes. The viruses were assayed by growing sugar beet (cv. Beta 1395) in the soil samples and their incidence was determined using the double-antibody sandwich enzyme-linked immunosorbent assay. Both viruses were detected in samples from all fields but were in greater frequencies singly than in association. Association of the two viruses (where both viruses were detected in the same sample or bait plant) varied among fields, ranging from 1 to 42%. Geostatistical analysis revealed that both viruses, in large part, exhibited similar spatial patterns. In all but two fields, there was no spatial dependence among the sampling locations at sampled grid sizes. Their semivariances were constant at all separation distances in all directions indicating random spatial patterns. Overall, the spatial pattern of BNYVV appeared to be a little more structured than that of BSBMV. Even though both viruses are transmitted by the same vector and also exhibited similar distribution patterns, the incidence of one virus may not be estimated from that of the other due to lack of strong association and spatial dependence. However, similarity in spatial patterns of the two suggests that a similar sampling method can be employed for both viruses.



© 2003 The American Phytopathological Society