Link to home

Evaluation of the MI82 Corn Line as a Source of Resistance to Aflatoxin in Grain and Use of BGYF as a Selection Tool

September 2003 , Volume 87 , Number  9
Pages  1,059 - 1,066

L. M. Maupin , M. J. Clements , and D. G. White , Department of Crop Sciences, University of Illinois, Urbana 61801



Go to article:
Accepted for publication 5 April 2003.
ABSTRACT

Our objectives were to determine if the corn (Zea mays) inbred MI82 has alleles for resistance to Aspergillus ear rot (caused by Aspergillus flavus) and aflatoxin accumulation in grain that can be transferred to commercially used inbreds, and to determine the types and magnitudes of gene action, heritabilities, and gain from selection for low levels of bright greenish-yellow fluorescence (BGYF), aflatoxin, and ear rot with MI82. Also, we hoped to determine if selection against BGYF would substantially reduce the concentration of aflatoxin in grain. Primary ears and ground grain from inbred MI82 (P1), the susceptible inbred B73 (P2), and the F1, F2, F3, BCP1S1, and BCP2S1 generations developed from these inbreds were evaluated for BGYF, concentration of aflatoxin in grain, and severity of Aspergillus ear rot in 2000 and 2001. Dominance was the most important gene action associated with low levels of BGYF and a low concentration of aflatoxin in grain. Heritabilities for low levels of BGYF (83.5%), aflatoxin (74.1%), and ear rot (62.8%) were high. Correlation coefficients between aflatoxin and BGYF were high in both years (r = 0.75 and 0.79 for 2000 and 2001, respectively). Unlike aflatoxin, BGYF was not affected by the year in which plants were grown. Selection for low levels of BGYF prior to selection based on aflatoxin concentration is as effective as selection for either factor alone. MI82 has value in programs designed to improve the resistance of commercially used corn inbreds.


Additional keywords: maize, mycotoxin

© 2003 The American Phytopathological Society