Link to home

First Report of Crown and Root Rot in Strawberry Caused by Macrophomina phaseolina in Israel

September 2005 , Volume 89 , Number  9
Pages  1,014.3 - 1,014.3

A. Zveibil and S. Freeman , Department of Plant Pathology, ARO, The Volcani Center, Bet Dagan 50250, Israel



Go to article:
Accepted for publication 9 June 2005.

A phenomenon of wilting in strawberry (Fragaria × ananassa Duchesne) transplants, cultivated for annual winter production, was observed on several cultivars at 14 farmers' plots in nine growing regions in Israel during September and October 2004. Typical ‘charcoal rot’ symptoms included necrotic root and crown rot accompanied by plant wilting and chlorosis of leaves (1). Pure cultures of Macrophomina phaseolina were isolated from affected roots and crowns of plants (1) when incubated at 25°C in the dark on potato dextrose agar (PDA) (Difco Laboratories, Sparks, MD) medium containing 250 mg/l of chloramphenicol. Dark, oblong sclerotia averaging 40 μm wide by 200 μm long were observed in the infected root tissue and in culture 7 to 10 days after isolation (2). Twenty-two single sclerotium isolates were recovered from five infected cultivars (Yuval, Herut, Tamar, Hadas, and Malach) and three representative isolates were used in two pathogenicity assays. Inoculum of M. phaseolina was produced by blending 3-week-old cultures on PDA plates (9 cm diameter) in 100 ml of sterile distilled water, filtering the suspension through eight layers of gauze, and adjusting the concentration to 105 sclerotia per ml. In the first pathogenicity assay, each of the three isolates was inoculated on five plants (cv. Malach). Plants were produced from nursery runners and potted in a soilless coconut and styrofoam (3:1 vol/vol) medium, 1 liter per pot. Each plant was inoculated by pouring 50 ml of sterile water containing 105 sclerotia per ml per pot. Plants were incubated at 30°C with 12-h day/night conditions and watered with 100 ml every 3 to 7 days. Five noninoculated control plants were included. Necrosis at the base of petioles and chlorosis of leaves, followed by initial wilting of leaves, were observed after 2 weeks on inoculated plants. Plant mortality was first recorded approximately 5 weeks after inoculation and 100% mortality was recorded 10 weeks postinoculation. In the second pathogenicity assay, the same three isolates were used to inoculate four plants each of two different cultivars (Malach and Hadas) as described previously. Identical disease symptoms, as described previously, were observed 17 days after inoculation. Initial plant mortality was observed approximately 6 weeks postinoculation. In both pathogenicity assays, M. phaseolina was readily reisolated on amended PDA from all symptomatic and dead plants, which successfully completed Koch's postulates. Noninoculated control plants remained healthy. Although M. phaseolina has been reported in other crops in Israel, to our knowledge, this is the first report of the pathogen on strawberry in our country. This study suggests that the current soil fumigation regimen for control of fungal pathogens such as M. phaseolina, utilizing alternatives to methyl bromide which is currently being phased out in Israel, may not be adequate to maintain healthy strawberry material at all production stages. A similar observation was recently reported in Florida (2). Charcoal rot of strawberry has also been recorded on strawberry in France, India, and Egypt (1).

References: (1) J. Maas. Macrophomina leaf blight and dry crown rot and Macro-phomina root rot and charcoal rot. Pages 26 and 59 in: Compendium of Strawberry Diseases. 2nd ed. J. L. Maas, ed. The American Phytopathological Society, St. Paul, MN, 1998. (2) J. Mertely et al. Plant Dis. 89:434, 2005.



© 2005 The American Phytopathological Society