May
2007
, Volume
91
, Number
5
Pages
517
-
524
Authors
Y.
Tosa
,
Visiting Scholar
,
W.
Uddin
,
Associate Professor
,
G.
Viji
,
Postdoctoral Associate
, and
S.
Kang
,
Associate Professor, Department of Plant Pathology, The Pennsylvania State University, University Park 16802
; and
S.
Mayama
,
Professor, Faculty of Agriculture, Kobe University, Nada, Kobe 657-8501, Japan
Affiliations
Go to article:
RelatedArticle
Accepted for publication 7 November 2006.
Abstract
ABSTRACT
Gray leaf spot caused by Magnaporthe oryzae is a serious disease of perennial ryegrass (Lolium perenne) turf in golf course fairways in the United States and Japan. Genetic relationships among M. oryzae isolates from perennial ryegrass (prg) isolates within and between the two countries were examined using the repetitive DNA elements MGR586, Pot2, and MAGGY as DNA fingerprinting probes. In all, 82 isolates of M. oryzae, including 57 prg isolates from the United States collected from 1995 to 2001, 1 annual ryegrass (Lolium multiflorum) isolate from the United States collected in 1972, and 24 prg isolates from Japan collected from 1996 to 1999 were analyzed in this study. Hybridization with the MGR586 probe resulted in approximately 30 DNA fragments in 75 isolates (designated major MGR586 group) and less than 15 fragments in the remaining 7 isolates (designated minor MGR586 group). Both groups were represented among the 24 isolates from Japan. All isolates from the United States, with the exception of one isolate from Maryland, belonged to the major MGR586 group. Some isolates from Japan exhibited MGR586 fingerprints that were identical to several isolates collected in Pennsylvania. Similarly, fingerprinting analysis with the Pot2 probe also indicated the presence of two distinct groups: isolates in the major MGR586 group showed fingerprinting profiles comprising 20 to 25 bands, whereas the isolates in the minor MGR586 group had less than 10 fragments. When MAGGY was used as a probe, two distinct fingerprint types, one exhibiting more than 30 hybridizing bands (type I) and the other with only 2 to 4 bands (type II), were identified. Although isolates of both types were present in the major MGR586 group, only the type II isolates were identified in the minor MGR586 group. The parsimony tree obtained from combined MGR586 and Pot2 data showed that 71 of the 82 isolates belonged to a single lineage, 5 isolates formed four different lineages, and the remaining 6 (from Japan) formed a separate lineage. This study indicates that the predominant groups of M. oryzae associated with the recent outbreaks of gray leaf spot in Japan and the United States belong to the same genetic lineage.
JnArticleKeywords
Additional keywords:
genetic diversity,
Pyricularia grisea,
Pyricularia oryzae,
turfgrass
Page Content
ArticleCopyright
© 2007 The American Phytopathological Society