Link to home

First Report of Pythium Root Dysfunction of Creeping Bentgrass Caused by Pythium volutum in North Carolina

May 2007 , Volume 91 , Number  5
Pages  632.3 - 632.3

J. P. Kerns and L. P. Tredway , Department of Plant Pathology, North Carolina State University, Raleigh 27695



Go to article:
Accepted for publication 28 January 2007.

In July and August of 2002 and 2003, a disease of unknown etiology was observed in Charlotte, NC on ‘A-1’ creeping bentgrass (CRB; Agrostis stolonifera L.) putting greens that were constructed in 2000. Symptoms appeared in irregular patches ranging from 15 to 30 cm in diameter. Grass in the affected areas was initially wilted and chlorotic, but later exhibited a yellow-to-orange foliar decline. Similar symptoms were observed in Durham, NC in July and August of 2003 on CRB greens established in 2001 with a 1:1 blend of ‘A-1’ and ‘A-4’. The disease was initially diagnosed as take-all patch, but attempts to isolate Gaeumannomyces graminis var. avenae and other ectotrophic root pathogens were unsuccessful. Symptoms of the disease reappeared during periods of warm, dry weather in the fall of 2003 and spring of 2004. At that time, examination of affected root tissue revealed bulbous root tips, loose cortical structure, absence of root hairs, and abundant Pythium oospores and hyphae. These signs and symptoms are typical of Pythium root dysfunction (PRD) as described by Hodges and Coleman (2) in 1985 and Feng and Dernoeden (3) in 1999. Isolation of Pythium spp. was performed by plating directly on V8 agar (4) or baiting with ‘A-4’ CRB seedlings. Eleven Pythium isolates were obtained from Charlotte (seven via baiting) and 10 were obtained from Durham (all via baiting). All isolates were transferred to grass leaf-blade cultures (4) to induce development of sporangia, oospores, and antheridia for identification using the keys and descriptions of Dick (1). All isolates produced lobate sporangia, large oospores (27 to 33 ± 2.8 μm), and three to nine diclinous antheridia typical of Pythium volutum. Cone-Tainers (3.8 × 20 cm) containing sand meeting USGA specifications were seeded with ‘A-1’ CRB and grown for 6 weeks in the greenhouse. Each Cone-Tainer was inoculated by cutting the root system at a 5 cm depth, placing five to seven infested grass blades onto the surface of fresh sand, and then replacing the turf. Cone-Tainers inoculated with one of three P. volutum isolates and an uninoculated control (six reps each) were placed in a growth chamber with 12 h of light/dark periods at 24/16°C for 4 weeks to allow pathogen infection and disease development. After 4 weeks, the chamber temperature was raised to 32/26°C to induce symptom development. Two weeks after raising the temperature, all P. volutum isolates caused significant (P = <0.0001) foliar chlorosis and dieback (70 to 100% disease) and reduced root depth and mass by 25 to 65% compared with the uninoculated control. Roots of inoculated plants were colonized with Pythium hyphae, contained numerous oospores, and consistently yielded P. volutum in isolations. To our knowledge, this is the first reported occurrence of PRD in North Carolina and provides further support for the importance of P. volutum as a pathogen of creeping bentgrass. On the basis of our observations, the majority of pathogen activity and disease development occurs in the fall and spring, with foliar symptoms being induced by heat or other stresses.

References: (1) M. W. Dick. Keys to Pythium. University of Reading Press, Reading, UK, 1990. (2) C. F. Hodges and L. W. Coleman. Plant Dis. 69:336, 1985. (3) Y. Feng and P. H. Dernoeden. Plant Dis. 83:516, 1999. (4) F. N. Martin. Pythium. Pages 39--49 in: Methods for Research on Soilborne Phytopathogenic Fungi. L. L. Singleton et al., eds. The American Phytopathological Society, St. Paul, MN, 1992.



© 2007 The American Phytopathological Society