Authors
L. M. Kawchuk, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada;
R. J. Howard, Alberta Agriculture and Rural Development, Crop Diversification Centre South, Brooks, AB T1R 1E6, Canada;
R. D. Peters, Agriculture and Agri-Food Canada, Charlottetown, PE, Canada; and
K. I. Al-Mughrabi, New Brunswick Department of Agriculture and Aquaculture, Wicklow, NB, Canada
Late blight is caused by the oomycete Phytophthora infestans (Mont.) de Bary and is one of the most devastating diseases of potato and tomato. Late blight occurs in all major potato- and tomato-growing regions of Canada. Its incidence in North America increased during 2009 and 2010 (2). Foliar disease symptoms appeared earlier than usual (June rather than July) and coincided with the identification of several new P. infestans genotypes in the United States, each with unique characteristics. Prior to 2007, isolates collected from potato and tomato crops were mainly US8 or US11 genotypes (1). However, P. infestans populations in the United States have recently experienced a major genetic evolution, producing isolates with unique genotypes and epidemiological characteristics in Florida and throughout the northeastern states (2). Recent discoveries of tomato transplants with late blight for sale at Canadian retail outlets prompted an examination of the genotypes inadvertently being distributed and causing disease in commercial production areas in Canada. Analysis of isolates of P. infestans from across Canada in 2010 identified the US23 genotype for the first time from each of the four western provinces (Manitoba, Saskatchewan, Alberta, and British Columbia) but not from eastern Canada. Allozyme banding patterns at the glucose phosphate isomerase (Gpi) locus indicated a 100/100 profile consistent with US6 and US23 genotypes (4). Mating type assays confirmed the isolates to be A1 and in vivo metalaxyl sensitivity was observed. Restriction fragment length polymorphic analysis of 50 isolates from western Canada with the multilocus RG57 sequence and EcoRI produced the DNA pattern 1, 2, 5, 6, 10, 13, 14, 17, 20, 21, 24, 24a, 25 that was indicative of US23 (3). The recently described P. infestans genotype US23 appears to be more aggressive on tomato, and although isolates were recovered from both tomato and potato, disease symptoms were often more severe on tomato. Results indicate that movement and evolution of new P. infestans genotypes have contributed to the increased incidence of late blight and that movement of the pathogen on retail plantlets nationally and internationally may provide an additional early season source of inoculum. A major concern is that the introduced new A1 populations in western Canada have established a dichotomy with the endogenous A2 populations in eastern Canada, increasing the potential for sexual recombination producing oospores and additional genotypes should these populations merge.
References: (1) Q. Chen et al. Am. J. Potato Res. 80:9, 2003. (2) K. Deahl. (Abstr.) Phytopathology 100(suppl.):S161, 2010. (3) S. B. Goodwin et al. Curr. Genet. 22:107, 1992. (4) S. B. Goodwin et al. Phytopathology 88:939, 2004.