Link to home

First Report of Leaf Blight Caused by Nigrospora sphaerica on Curcuma in China

September 2011 , Volume 95 , Number  9
Pages  1,190.2 - 1,190.2

L. X. Zhang, College of Plant Protection, Anhui Agricultural University, 230036, Hefei, China; J. H. Song, College of Horticulture, Anhui Agricultural University, 230036, Hefei, China; and G. J. Tan and S. S. Li, College of Plant Protection, Anhui Agricultural University, 230036, Hefei, China



Go to article:
Accepted for publication 18 May 2011.

Curcuma (family Zingiberaceae) is commonly cultivated for the use of rhizomes within traditional Chinese medicines. In October 2009 and 2010, severe leaf blight was observed on Curcuma wenyujin Y.H. Chen & C. Ling (4) in fields located in Ruian, China. The area of cultivation in Ruian encompasses 90% of the production in Zhejiang Province. Disease incidence was approximately 90% of plants observed in affected fields. Early symptoms were yellow-to-brown, irregular-shaped lesions on the leaf margin or tip. After several days, lesions expanded along the mid-vein until the entire leaf was destroyed. Blighted leaves turned grayish to dark brown and withered, and severely affected plants died. Eight fungal isolates were recovered from symptomatic C. wenyujin leaves, collected from eight different fields, on potato dextrose agar (PDA). These fungal colonies were initially white, becoming light to dark gray and produced black, spherical to subspherical, single-celled conidia (14 to 17 × 12 to 15 μm), which were borne on a hyaline vesicle at the tip of the conidiophores. On the basis of these morphological features, the isolates appeared to be similar to Nigrospora sphaerica (2). Strain ZJW-1 was selected as a representative for molecular identification. Genomic DNA was extracted from the isolate, and the internal transcribed spacer (ITS) region of the ribosomal DNA (ITS1-5.8S-ITS2) was amplified using ITS1 (5′-TCCGTAGGTGAACCTGCGG-3′) and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) primers (3). The ITS region was further cloned and sequenced (GenBank Accession No. JF738028) and was 99% identical to N. sphaerica (GenBank Accession No. FJ478134.1). On the basis of morphological data and the ITS rDNA sequence, the isolate was determined to be N. sphaerica. Pathogenicity tests were conducted on four leaves of four C. wenyujin plants by placing agar pieces (5 mm in diameter) from 8-day-old cultures on pushpin-wounded leaves. An equal number of control plants were wounded and inoculated with noncolonized PDA agar pieces. Plants were placed in moist chambers at 25°C with a 12-h photoperiod. Brown-to-black lesions were observed on wounded leaves after 3 days and expanded to an average of 56 × 40 mm 15 days after inoculation. No symptoms developed on the control leaves. The pathogen was reisolated from the margins of necrotic tissues but not from the controls. The pathogen has been reported as a leaf pathogen on several hosts worldwide (1). To our knowledge, this is the first report of N. sphaerica as a leaf pathogen of C. wenyujin in China. Future research will focus primarily on management of this disease.

References: (1) D. F. Farr and A. Y. Rossman. Fungal Databases, Systematic Mycology and Microbiology Laboratory, USDA-ARS, Retrieved from http://nt.ars-grin.gov/fungaldatabases/, March 31, 2011. (2) E. W. Mason. Trans. Brit. Mycol. Soc. 12:152, 1927. (3) T. J. White et al. PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990. (4) J. Zhao et al. Molecules 15:7547, 2010.



© 2011 The American Phytopathological Society