Authors
C. L. Rivard, Department of Plant Pathology,
S. O'Connell and
M. M. Peet, Department of Horticultural Science, and
R. M. Welker and
F. J. Louws, Department of Plant Pathology, North Carolina State University, Raleigh 27695
Abstract
Bacterial wilt, caused by Ralstonia solanacearum, can result in severe losses to tomato (Solanum lycopersicum) growers in the southeastern United States, and grafting with resistant rootstocks may be an effective strategy for managing this disease. However, R. solanacearum populations maintain considerable diversity, and little information is known regarding the efficacy of commercially available rootstocks to reduce bacterial wilt incidence and subsequent crop loss in the United States. In this study, tomato plants grafted onto ‘Dai Honmei’ and ‘RST-04-105-T’ rootstocks had significantly lower area under the disease progress curve (AUDPC) values compared with nongrafted plants (P < 0.05). Across three locations in North Carolina, final bacterial wilt incidence for non- and self-grafted plants was 82 ± 14 to 100%. In contrast, bacterial wilt incidence for the grafted plants was 0 to 65 ± 21%. Final bacterial wilt incidence of plants grafted with Dai Honmei rootstock was 0 and 13 ± 3% at two locations in western North Carolina but 50 ± 3% at a third site in eastern North Carolina. Similarly, grafting onto RST-04-105-T rootstock significantly reduced AUDPC values at two of the three locations (P < 0.05) compared with that of the nongrafted plants, but performed poorly at the third site. Total fruit yields were significantly increased by grafting onto resistant rootstocks at all three sites (P < 0.05). Regression analyses indicated that yield was significantly negatively correlated with bacterial wilt AUDPC values (R2 was 0.4048 to 0.8034), and the use of resistant rootstocks enabled economically viable tomato production in soils naturally infested with R. solanacearum.