Authors
L.
Luongo
,
M.
Galli
,
S.
Vitale
,
A.
Haegi
, and
A.
Belisario
,
Consiglio Nazionale per la Ricerca e la Sperimentazione in Agricoltura - Centro di Ricerca per la Patologia Vegetale (CRA-PAV), Via C. G. Bertero 22, 00156 Roma, Italy
The genus Rhododendron comprises over 1,000 species, which represent many important ornamental shrubs. Microbial isolations were made from Rhododendron catawbiense plants showing symptoms of wilt, dieback, and death of shoots obtained from two nurseries in the Latium region in the late summer of 2012. A Phytophthora species was consistently recovered by plating small pieces of stem and collar tissues, cut from the margin of lesions, on P5ARPH selective medium. Pure cultures were obtained by single-hyphal transfers and they grew in a rosaceous pattern on potato dextrose agar (PDA) at an optimum temperature of 28 to 30°C. Sporangia formation was induced on pepper seeds (3). Sporangia were ellipsoid, fusiform or obpyriform, papillate, occasionally bipapillate, caducous, with a long pedicel (up to 100 μm), and mean dimensions of 45 × 25 μm with a mean length/width ratio of 1.8. Chlamydospores ranged from 25 to 32 μm in diameter. Isolates were considered heterothallic because they did not produce gametangia in vitro or in planta. On the basis of morphological features, the isolates were identified as Phytophthora tropicalis Aragaki & Uchida. Identity was confirmed by sequence comparison in GenBank with 99% homology both for internal transcribed spacer (ITS) and mitochondrial partial COI for cytochrome oxidase subunit 1. The sequences of two isolates AB211 and AB212 were deposited in the European Nucleotide Archive (ENA) with accession nos. HF937577 and HF937578 for ITS, and HF937579 and HF937580 for COI, respectively. Pathogenicity tests were conducted in the greenhouse on a total of six 1-year-old shoots cut from R. catawbiense plants with two inoculation points each. Mycelial plugs cut from the margins of actively growing 8-day-old cultures on PDA were inserted through the epidermis to the phloem. Controls were treated as described above except for inoculation with sterile PDA plugs. Inoculated shoots were incubated in test tubes with sterile water for 1 week in the dark at 26 ± 2°C. Lesions were evident at the inoculation points. P. tropicalis was consistently reisolated from the margin of symptomatic tissues. Control shoots remained symptomless. In Italy, P. tropicalis has been reported on several ornamental species (1) and on apricot trees (4) indicating a broad host range. On the same host it has been reported in Virginia, United States (2). To the best of our knowledge, this is the first report of Phytophthora damage on Rhododendron caused by P. tropicalis in Italy.
References: (1) S. O. Cacciola et al. Plant Dis. 90: 680, 2006. (2) C. X. Hong et al. Plant Dis. 90: 525, 2006. (3) E. Ilieva et al. Eur. J. Plant Path. 101: 623, 1995. (4) A. Pane et al. Plant Dis. 93: 844, 2009.