Authors
T. Maoka, Potato Production and Protection Research Team, National Agricultural Research Center for Hokkaido Region, 1 Hitsujigaoka, Toyohira-ku, Sapporo, Hokkaido, 062-8555 Japan;
S. Sugiyama and
Y. Maruta, LAB Company, Ltd. 2-12 N27W6 Kita-ku Sapporo, Hokkaido, 001-0027 Japan; and
T. Hataya, Laboratory of Pathogen--Plant Interactions, Plant Breeding Science, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589 Japan
ABSTRACTA complementary DNA (cDNA) macroarray was developed for simultaneous detection of 12 different potato viruses. A suitable region in the viral genome for each was selected for Alfalfa mosaic virus, Cucumber mosaic virus, Potato aucuba mosaic virus, Potato leafroll virus, Potato mop-top virus, Potato virus A, Potato virus M, Potato virus S, Potato virus X, Potato virus Y, Tomato ringspot virus, and Tomato spotted wilt virus, and their respective cDNAs were cloned into plasmid vectors. Capture probes for each virus ranging from 290 to 577 bp were generated by polymerase chain reaction (PCR) and immobilized on a nylon membrane. Total RNAs were extracted from each of these virus infected-plants, and cDNAs were synthesized from the RNA extracts using a random 9-mer primer. Subsequently, PCR reactions were performed using one primer pair for each of the 12 viruses. During PCR, amplified cDNAs were labeled with biotin and used as a target for hybridization analyses on a macroarray membrane. Hybridization signals between capture probes for the 12 viruses and their respective target cDNAs were observed using chemiluminescent or colorimetric detection. In all viruses, hybridization signals with capture probes were detected only when homologous virus targets were examined, and no hybridization to healthy plant extract was observed, facilitating identification of each virus. The results by colorimetric detection agreed with those obtained using chemiluminescence. The macroarray method developed was 5 × 102 to 4 × 106 times more sensitive than enzyme-linked immunosorbent assay and 5 to 5 × 104 times more sensitive than reverse-transcription PCR, except for Alfalfa mosaic virus. Colorimetric detection and substantial reduction in cross-hybridization signals much improved the method compared with other array-based detection methods for practical use.