Authors
E. Mirzwa-Mróz, Department of Plant Pathology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
M. Wińska-Krysiak, Section of Basic Research in Horticulture, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
J. Marcinkowska, Department of Plant Pathology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; and
M. L. Gleason, Iowa State University, Ames
Sooty blotch and flyspeck (SBFS), a disease caused by a complex of fungi, results in substantial economic losses for commercial growers of scab-resistant apple (Malus × domestica Borkh.) cultivars in Poland. However, many species causing SBFS in Poland are unidentified and sources of inoculum are uncertain. In August 2009, signs of SBFS were noted on fruit of plum (Prunus domestica L., cvs. Sweet Common Prune and Oullins Golden Gage) in orchards near Mostki in central Poland. Colonies consisted of olive green-to-black mycelial mats with few sclerotium-like bodies; infections ranged in severity from scattered spots to nearly complete coverage of the fruit surface. Ten of these colonies were isolated on potato dextrose agar (PDA). After 10 days of incubation at 22°C, total DNA was extracted; amplification of the internal transcribed spacer (ITS) region of rDNA utilized primers ITS1 and ITS4 (1). Nucleotide sequences were analyzed by ClustalW and compared with sequences in GenBank using BLAST. Sequences showed 99 to 100% homology to Microcyclosporella mali (2), which was formerly assigned as Pseudocercosporella sp. (1). Sequences from five isolates were submitted to GenBank (Accession Nos. HM101275, HM101276, HM101277, HM101278, and HM101279). Morphological characteristics–conidiogenous cells integrated, sympodial and polyblastic; conidial scars nonthickened and inconspicuous; conidia hyaline, subcylindric, narrow, straight or very slightly curved, truncate at the base and obtuse at the apex, often catenulate in simple or branched chains, with one (commonly) to five septa (12.5 × 2.6 to 50.7 × 4.0 μm)–were consistent with descriptions of M. mali (2). To fulfill Koch's postulates, each of the 10 isolates was used to inoculate three healthy apple fruit (cv. Golden Delicious) that had been previously washed under tap water and disinfested with 70% ethanol. After fruit were swabbed with cotton plugs that had been saturated with a suspension of spores in sterile distilled water (SDW), inoculated fruit were placed on filter paper that had been moistened with SDW, then sealed in foil bags and incubated at 22°C. When bags were removed 5 weeks later, dark colonies had appeared on the fruit. Isolates obtained from these colonies were morphologically identical to those used for inoculation. Control (SDW-inoculated and noninoculated) fruit that were incubated in the same manner developed no colonies. To our knowledge, this is the first report of SBFS on plum caused by M. mali in Poland; it had previously been noted as part of the SBFS complex on apple in Germany and Slovenia (2) and on apple and plum in the United States (3).
References: (1) J. C. Batzer et al. Mycologia 97:1268, 2005. (2) J. Frank et al. Persoonia 24:93, 2010. (3) J. Latinović et al. Plant Dis. 91:1685, 2007.