Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
Colletotrichum lagenarium, the casual agent of anthracnose of cucumber, forms specialized infection structures, called appressoria, during infection. To evaluate the role of cAMP signaling in C. lagenarium, we isolated and functionally characterized the regulatory subunit gene of the cAMP-dependent protein kinase (PKA). The RPK1 gene encoding the PKA regulatory subunit was isolated from C. lagenarium by polymerase chain reaction-based screening. rpk1 mutants, generated by gene replacement, exhibited high PKA activity during vegetative growth, whereas the wild-type strain had basal level activity. The rpk1 mutants showed significant reduction in vegetative growth and conidiation. Furthermore, the rpk1 mutants were nonpathogenic on cucumber plants, whereas they formed lesions when inoculated through wounds. A suppressor mutant showing restored growth and conidiation was isolated from a rpk1 mutant culture. The rpk1-suppressor mutant did not show high PKA activity, unlike the parental rpk1 mutant, suggesting that high PKA activity inhibits normal growth and conidiation. The suppressor mutant, however, was nonpathogenic on cucumber and failed to form lesions, even when inoculated through wounds. The rpk1 and suppressor mutants formed melanized appressoria on the host leaf surface but were unable to generate penetration hyphae. These results suggest that proper regulation of the PKA activity by the RPK1-encoded regulatory subunit is required for growth, conidiation, and appressorium function in C. lagenarium.