ABSTRACT
Experiments to identify the factors affecting survival of Bremia lactucae sporangia after deposition on lettuce leaves were conducted in growth chambers and outdoors under ambient conditions. Lettuce seedlings at the four-leaf stage were inoculated with B. lactucae sporangia under dry conditions. Sporangia deposited on lettuce seedlings were incubated at different temperature and relative humidity (RH) combinations, exposed to 100, 50, 25, and 0% sunlight in the second experiment, and exposed to different artificial lights in wavelength ranges of UVA (315 to 400 nm), UVB (280 to 315 nm), or fluorescent light in the third experiment. After exposure for 0 to 48 h in the first experiment and 0 to 12 h in the second and third experiments, seedlings in two pots were sampled for each treatment, and sporangia were washed from 15 leaves excised from the sampled seedlings. Germination of sporangia was determined in water after incubation in the dark at 15°C for 24 h. The sampled seedlings with remaining leaves were first transferred to optimal conditions for infection (24 h), for the development of downy mildew, and then assessed for disease after 9 days. Sporangia survived much longer at 23°C (>12 h) than at 31°C (2 to 5 h), regardless of RH (33 to 76%). Germination percentage was significantly reduced after exposure to 50 and 100% sunlight. UVB significantly reduced sporangium viability, while fluorescent light and UVA had no effect relative to incubation in the dark. Infection of seedlings followed a pattern similar to germination of sporangia. Solar radiation is the dominant factor determining survival of B. lactucae sporangia, while temperature and RH have small, insignificant effects in coastal areas of California. This suggests that infections by sporangia that survived a day are probable only on cloudy days or on leaves that are highly shaded.
Additional keywords:
lettuce downy mildew,
ultraviolet radiation.