Department of Plant Pathology, University of Minnesota, 495 Borlaug Hall, 1991 Upper Buford Circle, St. Paul.
ABSTRACT
Septoria speckled leaf blotch (SSLB) is a sporadic but important disease of barley (Hordeum vulgare) in the Upper Midwest region of the United States and Prairie Provinces of Canada that is caused primarily by Septoria passerinii. Most of the widely grown cultivars in the region are susceptible to the disease. To identify and map SSLB resistance loci in U.S. barley breeding germplasm, we employed an association mapping approach using 3,840 breeding lines and cultivars and nearly 3,000 single-nucleotide polymorphism markers previously mapped to the seven barley chromosomes. SSLB infection responses (IRs) were assayed on seedling plants in the greenhouse using a 0-to-5 scale. From the analysis of four yearly panels consisting of 960 lines each, four quantitative trait loci (QTL) for SSLB resistance were identified: one on chromosome 1H (Rsp-qtl-H_12_31144), one on chromosome 3H (Rsp-qtl-3H_12_31488), and two on chromosome 6H (Rsp-qtl-6H_11_21032 and Rsp-qtl-6H_11_10064). Individual resistance QTL reduced the mean IR from 9 to 38% compared with lines lacking any resistance alleles. However, the combination of all four resistance QTL together reduced the mean IR by 83%. The markers found associated with these QTL will be valuable for programs utilizing marker-assisted selection for SSLB resistance.