Department of Plant Pathology, University of California, Davis 95616.
ABSTRACT
The root-knot nematode Meloidogyne hapla can reproduce on a wide range of crop species but there is variability in host range and pathogenicity both within and between isolates. The inbred strain VW9 causes galling but does not reproduce on Solanum bulbocastanum clone SB22 whereas strain VW8 causes little galling and reproduces poorly on this host. Comparison of reproduction on SB22 of nematode F2 lines generated from hybrids between strains VW8 and VW9 revealed that, whereas over half the lines produced no progeny, some lines reproduced to higher levels than did either parental strain. Using a genetic map previously generated using the same set of F2 lines, three quantitative trait loci (QTLs) were identified and positioned on linkage groups. A combination of two QTL alleles from one parent and one from the other was highly represented in F2 lines that exhibited higher reproduction than either parental strain but was absent from lines that failed to reproduce on SB22. This result suggests that sexual hybridization and assortment of opposing alleles leads to segregation of individuals with improved reproductive ability on a particular host. The genome sequence and integrated genetic and physical linkage map of M. hapla provide resources for identification of genes responsible for the identified QTL.