ABSTRACT
The annual genus Medicago core collection, consisting of 201 accessions, represents the genetic diversity inherent in 3,159 accessions from 36 annual Medicago species. This germ plasm was evaluated for resistance to anthracnose caused by Colletotrichum trifolii. Anthracnose is a major disease in perennial alfalfa (Medicago sativa L.) grown in North America and disease control is based principally on the use of resistant varieties. Evaluation of the core collection was conducted using standardized environmental conditions in growth chambers, and included the M. sativa standard reference cvs. Arc (resistant) and Saranac (susceptible). The degree of resistance found among accessions within species was highly variable; however, most annual species and accessions were susceptible. Only 14 accessions from seven species exhibited resistance greater than 40% seedling survival. These included accessions of M. murex, M. muricoleptis, M. polymorpha var. brevispina, M. polymorpha var. polymorpha, M. radiata, M. soleirolii, M. truncatula, and M. turbinata. Of the 12 accessions of M. polymorpha var. polymorpha, 4 exhibited more than 50% resistance, but 3 accessions were 100% susceptible. Most of the M. truncatula and M. turbinata accessions exhibited significantly more resistance than accessions of other species. Plant introduction (PI) accession number PI 495401 of M. muricoleptis exhibited 90.3% resistance. Accessions of M. scutellata were uniformly susceptible. Histological examinations of 14 of the most anthracnose-resistant accessions revealed that C. trifolii spores germinated and produced typical appressoria, but failed to penetrate and produce the primary and secondary hyphae characteristic of susceptible interactions. Resistant reactions were similar to those found in incompatible interactions with C. trifolii and alfalfa, which have been associated with specific genes leading to the production of isoflavonoid phytoalexins. The large genetic variability in annual Medicago spp. offers potential for locating and utilizing disease resistance genes through breeding or genetic engineering that will enhance the utilization of Medicago spp. as a forage crop.