Link to home

First Report of Sclerotium rolfsii on Kenaf in South Africa

July 2003 , Volume 87 , Number  7
Pages  874.1 - 874.1

W. J. Swart and M. T. Tesfaendrias , Department of Plant Pathology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa ; and J. Terblanche , ARC Institute for Industrial Crops, Private Bag X2075, Rustenburg 0300, South Africa



Go to article:
Accepted for publication 6 May 2003.

Kenaf, Hibiscus cannabinus L. (Malvaceae), is being planted commercially in South Africa for the high quality cellulose fibers that it produces. In a January 2001 survey of 3-month-old kenaf plants grown from seed in experimental plots near Rustenburg, Northwest Province, 30% of plants were observed with severe wilting. Stems at ground level of all infected plants had sunken tan lesions, white mycelial strands, and small, dark brown, 1 to 2 mm diameter sclerotia. Isolations from diseased stem tissue on malt extract agar (MEA) consistently yielded a fungus conforming to the description of Sclerotium rolfsii Sacc. (teleomorph Athelia rolfsii (Curzi) Tu & Kimbrough). Pathogenicity tests were conducted by applying toothpick tips (5 mm) colonized by S. rolfsii on MEA to the stems of 120-day-old potted plants of 10 kenaf cultivars in the greenhouse. Five plants of each cultivar were wounded once using a sharp dissecting needle, and a colonized toothpick tip was placed on top of each wound. Control treatments consisted of five plants per cultivar each wounded and inoculated with sterile toothpick tips. All inoculation points were wrapped using Parafilm, and the experiment was conducted twice. Lesions were measured after 10 days. Mean lesion lengths for the 10 cultivars were as follows: Dowling (34.9 mm), Cuba 108 (38.6 mm), Gregg (41.1 mm), Everglades 41 (44.2 mm), SF459 (44.9 mm), Tainung 2 (45.8 mm), El Salvador (45.9 mm), Whitton (46.1 mm), Everglades 71 (46.4 mm), and Endora (54.0 mm). The Newman-Keuls multiple comparison test revealed that cvs. Dowling and Endora were significantly more resistant and more susceptible (P < 0.05), respectively, than the other cultivars. Lesions did not develop on control plants. The fungus was reisolated on MEA from all artificially inoculated plants. The pathogen is reported to cause serious losses in yield and fiber quality of kenaf (1). To our knowledge, this is the first report of S. rolfsii on kenaf in South Africa. Commercial plantings of kenaf in South Africa are expected to exceed 500 ha during the next 2 years, so its potential impact on kenaf production in this country will be significant if efficient disease control measures are not practiced.

References: (1) J. M. Dempsey. Kenaf. Pages 203--304 in: Fiber Crops. The University Press of Florida, Gainesville, 1975.



© 2003 The American Phytopathological Society