Authors
F. M. Grasso and
A. Pane, Dipartimento di Scienze e Tecnologie Fitosanitarie, University of Catania, 95123 Catania, Italy; and
S. O. Cacciola, Dipartimento di Scienze Entomologiche, Fitopatologiche, Microbiologiche Agrarie e Zootecniche, University of Palermo, 90128 Palermo, Italy
During 2006, in a garden in the Mount Etna Piedmont, eastern Sicily (Italy), a 40-year-old specimen of Canary Island date palm (Phoenix canariensis hort. ex Chabaud) with a trunk circumference at breast height of 220 cm showed a rotted lesion with a viscous, brown ooze at the stem base and root initials. The lesion extended to approximately one-third of the trunk circumference. Trunk excavation exposed a wet rot of internal tissues, a cream-colored mycelial mat, and a mushroom-like smell. Although the rot spread inward (approximately 25 cm deep) with decay of nonlignified ground tissues and blackening of wood fibers, the palm did not show symptoms on the canopy. Conversely, ferns, apricot, and cedar trees growing at the same site had died from Armillaria rot over the last 10 years (2). In late autumn, clumps of honey mushroom-like sphorophores with a prominent annulus encircling the stalk formed at the base of the trunk. The spore print of the basidiocarp was light cream. The morphology of 100 basidiospores was determined microscopically. The basidiospores were smooth, elliptical, hyaline, and measured 7 to 9.5 × 5 to 7 μm. The fungus was isolated from diseased tissues on selective benomyl-dichloran medium (3) and was transferred to 2% malt extract agar where it formed ribbon-shaped, fast-growing, and profusely branching rhizomorphs. Armillaria mellea (Vahl.) P. Kumm. was identified on the basis of cultural and morphological characteristics. Identification was confirmed by electrophoresis of mycelial proteins and isozymes in polyacrylamide and starch slab gels (1,2). The electrophoretic patterns of the isolate from P. canariensis were identical to those of reference isolates of A. mellea from grapevine and fern isolated previously at the same site (2). The pathogenicity of the A. mellea isolate from palm (A-palm5) was tested on 20 3-year-old potted seedlings of P. canariensis grown in a greenhouse at 24 ± 4°C. Seedlings were inoculated with wood pieces of holly oak (Quercus ilex L.) colonized by the fungus (two pieces for each seedling) (4). Ten noninoculated plants served as controls. After 12 months, mycelial fans colonizing the root initials, the base of the stem, and the leaf stalks were observed on 14 inoculated seedlings. Although only four infected seedlings showed decline symptoms, the fungus was reisolated from all inoculated plants. No infections were observed in control plants. To our knowledge, this is the first report of Armillaria butt rot on a palm in Europe.
References: (1) M. Bragaloni et al. Eur. J. For. Pathol. 27:147, 1997. (2) S. Grasso et al. Plant Dis. 84:592, 2000. (3) T. C. Harrington et al. Armillaria. Page 81 in: Methods for Research on Soilborne Phytopathogenic Fungi. The American Phytopathological Society, St. Paul, MN, 1992. (4) R. Metaliaj et al. Phytopathol. Mediterr. 45:3, 2006.