Authors
V. Talgø,
A. Sletten, and
M. B. Brurberg, Norwegian Institute for Agricultural and Environmental Research, Plant Health and Plant Protection Division, Høgskoleveien 7, 1432 Ås, Norway;
H. Solheim, The Norwegian Forest and Landscape Institute, P.O. Box 115, 1431 Ås, Norway; and
A. Stensvand, Norwegian Institute for Agricultural and Environmental Research, Plant Health and Plant Protection Division, Høgskoleveien 7, 1432 Ås, Norway
European ash (Fraxinus excelsior), also known as common ash, occurs naturally inland in lower areas of southeastern Norway and along the southern coast of the country. It is important both as a forest and ornamental tree. During the last decade, dieback has become a disastrous disease on F. excelsior in many European countries. The anamorphic fungus Chalara fraxinea T. Kowalski (1), described for the first time from dying ash trees in Poland, is now considered the cause of ash dieback (2). In May of 2008, C. fraxinea was isolated from 1.5 m high diseased F. excelsior in a nursery in Østfold County in southeastern Norway. Symptoms included wilting, necrotic lesions around leaf scars and side branches, and discoloration of the wood. From symptomatic branches, small pieces (approximately 1 cm3) were excised in the transition area between healthy and discolored wood. After surface sterilization (10 s in 70% ethanol + 90 s in NaOCl), the pieces were air dried for 1 min in a safety cabinet, cut into smaller pieces, and placed on media. The fungus was isolated on potato dextrose agar (PDA) and water agar (WA). On PDA, the cultures were tomentose, light orange, and grew slowly (21 mm mean colony diameter after 2 weeks at room temperature). Typical morphological features of C. fraxinea developed in culture. Brownish phialides (14.8 to 30.0 [19.5] × 2.5 to 5.0 [4.1] μm, n = 50) first appeared in the center of the colonies on the agar plugs that had been transferred. The agar plugs were 21 days old when phialides were observed. Abundant sporulation occurred 3 days later. Conidia (phialospores) extruded apically from the phialides and formed droplets. Conidia measured 2.1 to 4.0 (3.0) × 1.4 to 1.9 (1.7) μm (n = 50). The first-formed conidia from each phialide were different in size and shape from the rest by being longer (6 μm, n = 10) and more narrow in the end that first appeared at the opening of the phialide. Internal transcribed spacer sequencing confirmed that the morphological identification was correct (Accession No. EU848544 in GenBank). A pathogenicity test was carried out in June of 2008 by carefully removing one leaf per plant on 10 to 25 cm high F. excelsior trees (18 trees) and placing agar plugs from a 31-day-old C. fraxinea culture (isolate number 10636) on the leaf scars and covering with Parafilm. After 46 days, isolations were carried out as described above from discolored wood that had developed underneath necrotic lesions in the bark and subsequently caused wilting of leaves. All the inoculated plants showed symptoms, and C. fraxinea was successfully reisolated. No symptoms were seen on uninoculated control plants (eight trees) that had received the same treatment except that sterile PDA agar plugs had been used.
References: (1) T. Kowalski. For. Pathol. 36:264, 2006. (2) T. Kowalski and O. Holdenrieder, For. Pathol. Online publication, doi: 10.1111/j.1439-0329.2008.00565.x, 2008.