Authors
G. Polizzi,
D. Aiello,
V. Guarnaccia, and
A. Vitale, Dipartimento di Scienze e Tecnologie Fitosanitarie, University of Catania, Via S. Sofia 100, 95123 Catania, Italy; and
G. Perrone and
F. Epifani, Istituto di Scienze delle Produzioni Alimentari (ISPA), Via Amendola 122/O, 70126 Bari, Italy
Eremophila spp. (Myoporaceae family), endemic to Australia, are evergreen shrubs or small trees occurring in arid, semi-arid, tropical, or temperate regions. In Europe, Eremophila spp. are grown for their horticultural appeal. During 2009 and 2010, extensive wilting was observed on 2-month to 1-year-old potted plants of Eremophila laanii F. Muell., E. glabra subsp. carnosa Chinnock, and E. maculata (Ker Gawl.) F. Muell. grown in a commercial nursery near Catania (southern Italy). Internally, symptomatic plants had conspicuous vascular discoloration from the crown to the canopy. Diseased crown and stem tissues were surface disinfested for 30 s in 1% NaOCl, rinsed in sterile water, plated on potato dextrose agar (PDA) amended with 100 mg/liter of streptomycin sulfate, and incubated at 25°C. A Fusarium sp. was consistently isolated from affected plant tissues. Colonies with purple mycelia and violet reverse colors developed after 9 days. On carnation leaf agar, single-spore isolates produced microconidia on short monophialides, macroconidia that were three to five septate with a pedicellate base, and solitary and double-celled or aggregated chlamydospores. A PCR assay was conducted on two representative isolates (ITEM 12591 and ITEM 12592) by analyzing sequences of the partial CaM gene (coding calmodulin protein) and benA (coding beta-tubulin protein) using the primers as reported by O'Donnell et al. (1). Calmodulin sequences of ITEM 12951 and ITEM 12952 isolates (GenBank Nos. FR671157 and FR671158) exhibited 99.8 and 99.5% identity with Fusarium oxysporum strain ITEM 2367 (GenBank No. AJ560774), respectively, and had 99.5% homology between them. BenA gene sequences of ITEM 12951 (GenBank No. FR671426) exhibited an identity of 100% to F. oxysporum f. sp. vasinfectum strain CC-612-3 (GenBank No. AY714092.1), and benA gene sequences of ITEM 12952 (GenBank No. FR671427) exhibited an identity of 100% to F. oxysporum f. sp. vasinfectum strain LA 140 (GenBank No. FJ466740.1), whereas the homology between the two strains is 99.5%. Morphological characteristics, as well as CaM and benA sequences, identified the isolates as F. oxysporum Schlechtend:Fr. Pathogenicity tests were performed by placing 1-cm2 plugs of PDA from 9-day-old mycelial cultures near the crown on potted, healthy, 3-month-old cuttings of E. laanii, E. glabra subsp. carnosa, and E. maculata. Twenty plants for each species were inoculated with each isolate. The same number of plants served as noninoculated controls. All plants were enclosed for 4 days in plastic bags and placed in a growth chamber at 24 ± 1°C. Plants were then moved to a greenhouse where temperatures ranged from 23 to 27°C. Symptoms identical to those observed in the nursery developed 20 days after inoculation with both strains. Crown and stem discoloration was detected in all inoculated plants after 45 days. Wilting was detected on 15% of plants. Control plants remained symptomless. F. oxysporum was consistently reisolated from symptomatic tissues and identified as previously above. To our knowledge, this is the first report of F. oxysporum causing disease of Eremophila spp. worldwide.
Reference: (1) K. O'Donnell et al. Mycoscience 41:61, 2000.