Link to home

Confirmation of European Brown Rot Caused by Monilinia laxa on Tart Cherry, Prunus cerasus, in Western New York

June 2010 , Volume 94 , Number  6
Pages  783.2 - 783.2

S. M. Villani and K. D. Cox, Department of Plant Pathology and Plant-Microbe Biology, New York State Agricultural Experiment Station, Cornell University, Geneva 14456



Go to article:
Accepted for publication 14 March 2010.

Monilinia fructicola (G. Wint.) Honey and M. laxa (Aderh. & Ruhl.) Honey are two pathogens causing brown rot in the United States. While the presence of M. fructicola has been confirmed in all major stone-fruit-production regions in the United States, M. laxa has yet to be detected in much of the eastern production regions. In July 2008, a planting of tart cherries cv. Surefire in Appleton, NY developed severe shoot blight. Blighted shoots (>15% of first-year shoots) were wilted and light brown with the blight encompassing the distal end and often extending into second-year tissue with a distinct sunken margin. Leaves on symptomatic shoots had flushed, but were blighted. Blossom spurs were either blighted at bloom or bore fruit, which were subsequently blighted. Gummosis was commonly observed from cankers at the base of spurs. Both mature and immature mummified fruit in addition to spurs and shoot tissue were sporulating in a manner characteristic of Monilinia (2). Eleven branches displaying symptoms were removed for isolation. Sections of symptomatic shoots (5 cm long) were surface sterilized in 0.6% NaOCl for 1 min and rinsed in sterile dH2O. Cross sections of shoot tissue (3 mm thick), in addition to spores from fruit and spurs, were placed on potato dextrose agar amended with 50 μg/ml of streptomycin sulfate. Following incubation at 24°C for 5 days, 24 colonies exhibiting morphology consistent with that of M. fructicola (uniform colony margin) were obtained, along with nine colonies exhibiting lobed colony margins, commonly associated with M. laxa (3). All colonies resembling M. fructicola were isolated from fruit, whereas those resembling M. laxa were isolated from spurs and shoots. Conidia from both colony morphotypes were lemon-shaped, but those from putative M. laxa isolates were smaller on average (10.75 × 12.0 μm) compared with those from putative M. fructicola isolates (15.75 × 18.25 μm). Confirmation of M. laxa was also accomplished by inoculation of mature green pear (2). Pears inoculated with 104 putative M. laxa conidia per ml produced a region of white-buff colored mycelium but no spores within the inoculated area, while M. fructicola-inoculated pears sporulated abundantly. Identity was further confirmed by PCR amplification of the β-tubulin gene using M. laxa specific primers as previously described (1). Pathogenicity was proven by inoculating flowering shoots of tart cherry trees (cv. Montmorency) in spring 2009. Twenty shoots were spray inoculated with either 104 M. laxa conidia per ml or sterile dH2O and covered with plastic bags for 24 h. Shoots were monitored for symptom development on a weekly basis. Shoots inoculated with M. laxa developed characteristic shoot blight symptoms, while those inoculated with water remained healthy. M. laxa was reisolated from symptomatic shoots and spurs, but not water-inoculated tissues. The presence of M. laxa is reported for the Great Lakes region, which includes New York, but to our knowledge, this report is the first confirmed instance of economically devastating brown rot caused by M. laxa in New York. In the coming seasons, tart cherry growers must consider revising chemical management programs to protect against European brown rot infection during bloom.

References: (1) Z. Ma et al. Pest Manag. Sci. 61:449, 2005. (2) J. M. Ogawa et al. Compendium of Stone Fruit Diseases. The American Phytopathological Society. St. Paul, MN, 1995. (3) G. C. M. van Leeuwen and H. A. van Kesteren. Can. J. Bot. 76:2042, 1998.



© 2010 The American Phytopathological Society