Root rot was observed on wax gourd (Benincasa hispida (Thunb.) Cogn.) cv. Black Giant in August 2010 in a commercial vegetable farm in southern Georgia. Approximately 5% of the plants were affected and infected roots turned light to dark brown with partial or entire roots affected and the lower leaves became wilted. Symptomatic roots from six plants were surface sterilized with 0.6% sodium hypochlorite and plated on potato dextrose agar (PDA) medium. Pure cultures had white mycelia and spore masses and were obtained from all six plants by subculturing hyphal tips onto PDA. One- to two-celled, oval- to kidney-shaped microconidia and cylindrical macroconidia with two or three cells plus apical and basal cell were produced, which averaged 12.5 × 4 μm and 28 × 4.5 μm, respectively. Microconidia were abundant and macroconidia were sparse on PDA. Single-spore isolates were obtained and identified as a Fusarium sp. by PCR analysis with primers ITS-Fu-f and ITS-Fu-r (1). Genomic DNA of two isolates obtained from different plants was extracted and a portion of the translation elongation factor 1-α (TEF) gene of the isolates was amplified and sequenced (3). When compared with sequences available in the GenBank database, DNA sequences of the two isolates (GenBank Accession No. JF928376) shared 100% sequence identity with F. solani strain FRC S1734 (GenBank Accession No. DQ247527). The fungus was identified as F. solani (Mart.) Sacc. based on molecular analysis and morphological characteristics (2). Oat grains were separately infected with two isolates, BG2a and BG6, and used to inoculate healthy, 3-week-old wax gourd seedlings (cv. Black Giant) under greenhouse conditions (14-h photoperiod, 24 to 30°C). Each seedling was grown in a 10-cm pot containing a commercial potting mix, and five healthy plants were inoculated with each isolate by placing 15 infected oat grains around each plant at a depth of 5 cm in the soil. Five plants treated with noninfected oat grains served as controls. Symptoms identical to those on field samples developed on all inoculated plants 3 weeks after inoculation but not on the control plants. F. solani was reisolated from inoculated symptomatic plants and the identity was confirmed, which completed Koch's postulates. The experiment was repeated one more time under similar conditions. To our knowledge, this is the first report of root rot caused by F. solani on wax gourd in the United States. Wax gourd is an important specialty crop in the southeastern United States and the occurrence of this disease needs to be taken into account in wax gourd production.
References: (1) K. A. Abd-Elsalam et al. Afr. J. Biotechnol. 2:82, 2003. (2) C. Booth. Fusarium Laboratory Guide to the Identification of the Major Species. CMI, Kew, England, 1977. (3) D. M. Geiser et al. Eur. J. Plant Pathol. 110:473, 2004.