The exotic rangeland perennial Lepidium draba occurs as a noxious weed in 22 states, mostly in the western United States. Because chemical control measures against this invasive perennial, a member of the Brassicaceae, have not achieved adequate results, biological control is being pursued. While inventories of arthropods that feed on L. draba have been established, little is known of soilborne pathogens for possible use as biological control agents. To address this deficiency, we have surveyed for diseases of L. draba in the United States and Eurasia to identify and test potential biocontrol agents. In intensive surveys for soilborne diseases in a single infestation that is >20 years old in a cattle pasture in south-central Montana, several chlorotic, stunted plants were noted. Roots of chlorotic plants that exhibited elongated fissures from which other soilborne fungi were isolated also had numerous prominent pycnidia embedded in the crown tissue above the lesions. Examination with a dissecting microscope revealed large ostioles made evident by the wide concave inversions in the short necks of the pycnidia. Culture of root tissue on potato dextrose agar resulted in whitish, becoming pale gray colonies, with a dull peach-to-reddish tinge at the margins, with abundant single pycnidia. Conidia in vitro were mainly unicellular, variable shape, subglobose to ellipsoidal, with several guttules averaging 6 × 2.5 μm. These morphological traits are characteristic of Phoma macrostoma, which is regarded as a weak or wound pathogen. The internal transcribed spacer region of rDNA was amplified using primers ITS1 and ITS4 and sequenced. BLAST analysis of the 575-bp fragment showed a 100% homology with the sequence of an isolate of P. macrostoma that has been investigated extensively for commercialization as a biological control agent of various agricultural weeds (1), including wild mustard (GenBank No. DQ474091). The nucleotide sequence has been assigned GenBank No. HM755951. Pathogenicity tests consisted of making four 1.4-mm-diameter holes in five NaOCl (0.1%)-sterilized root sections of L. draba and pipetting ~50 to 100 μl of a 106 CFU/ml conidial suspension into the incisions, incubating the inoculated roots at 20 to 25°C overnight and planting the root sections, one per pot, in an artificial greenhouse potting mix and placing the pots in the greenhouse at 20 to 25°C. Controls were five root sections that were treated similarly except that sterile water was injected. The experiment was repeated. After 10 days, shoots that grew from inoculated roots were chlorotic and shorter than those produced from control roots. P. macrostoma was isolated from tissue of inoculated roots that became blackened distal to the inoculation points. To examine the host range of P. macrostoma on other brassica species, crowns of 2-week-old seedlings of radish, broccoli, cauliflower, broccoli raab, turnip, kohlrabi, cabbage, Chinese cabbage, mustard greens, and canola were injected with 0.5 ml of a 106 CFU/ml conidial suspension. Plants were grown in the greenhouse at 20 to 25°C for 4 weeks after inoculation and examined for symptoms. The experiment was repeated twice. Blackened root tissue with slight chlorosis occurred only on roots of radish and crowns of broccoli, from which P. macrostoma was reisolated. To our knowledge, this the first report of a disease of L. draba caused by P. macrostoma.
Reference: (1) K. L. Bailey et al. U.S. Patent Application Serial No. 60/294,475, Filed May 20, 2001.