Knowledge of pathogens in switchgrass, a potential biofuels crop, is limited. In December 2007, dark brown to black irregularly shaped foliar spots were observed on ‘Alamo’ switchgrass (Panicum virgatum L.) on the campus of the University of Tennessee. Symptomatic leaf samples were surface-sterilized (95% ethanol, 1 min; 20% commercial bleach, 3 min; 95% ethanol, 1 min), rinsed in sterile water, air-dried, and plated on 2% water agar amended with 3.45 mg fenpropathrin/liter (Danitol 2.4 EC, Valent Chemical, Walnut Creek, CA) and 10 mg/liter rifampicin (Sigma-Aldrich, St. Louis, MO). A sparsely sporulating, dematiaceous mitosporic fungus was observed. Fungal plugs were transferred to surface-sterilized detached ‘Alamo’ leaves on sterile filter paper in a moist chamber to increase spore production. Conidia were ovate, oblong, mostly straight to slightly curved, and light to olive-brown with 3 to 10 septa. Conidial dimensions were 12.5 to 17 × 27.5 to 95 (average 14.5 × 72) μm. Conidiophores were light brown, single, multiseptate, and geniculate. Conidial production was polytretic. Morphological characteristics and disease symptoms were similar to those described for Bipolaris oryzae (Breda de Haan) Shoemaker (2). Disease assays were done with 6-week-old ‘Alamo’ switchgrass grown from seed scarified with 60% sulfuric acid and surface-sterilized in 50% bleach. Nine 9 × 9-cm square pots with approximately 20 plants per pot were inoculated with a mycelial slurry (due to low spore production) prepared from cultures grown on potato dextrose agar for 7 days. Cultures were flooded with sterile water and rubbed gently to loosen mycelium. Two additional pots were inoculated with sterile water and subjected to the same conditions to serve as controls. Plants were exposed to high humidity by enclosure in a plastic bag for 72 h. Bags were removed, and plants were incubated at 25/20°C with 50 to 60% relative humidity. During the disease assay, plants were kept in a growth chamber with a 12-h photoperiod of fluorescent and incandescent lighting. Foliar leaf spot symptoms appeared 5 to 14 days post-inoculation for eight of nine replicates. Control plants had no symptoms. Symptomatic leaf tissue was processed and plated as described above. The original fungal isolate and the pathogen recovered in the disease assay were identified using internal transcribed spacer (ITS) region sequences. The ITS region of rDNA was amplified with PCR and primer pairs ITS4 and ITS5 (4). PCR amplicons of 553 bp were sequenced, and sequences from the original isolate and the reisolated pathogen were identical (GenBank Accession No. JQ237248). The sequence had 100% nucleotide identity to B. oryzae from switchgrass in Mississippi (GU222690, GU222691, GU222692, and GU222693) and New York (JF693908). Leaf spot caused by B. oryzae on switchgrass has also been described in North Dakota (1) and was seedborne in Mississippi (3). To our knowledge, this is the first report of B. oryzae from switchgrass in Tennessee.
References: (1) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/, 28 June 2012. (2) J. M. Krupinsky et al. Can. J. Plant Pathol. 26:371, 2004. (3) M. Tomaso-Peterson and C. J. Balbalian. Plant Dis. 94:643, 2010. (4) T. J. White et al. Pages 315-322 in: PCR Protocols: a Guide to Methods and Applications. M. A. Innis et al. (eds), Acad. Press, San Diego, 1990.