Abstract
Controlled-environment studies were conducted to examine effects of temperature (T) and wetness duration (W) on the sporulation rate of Phomopsis viticola on infected grape canes and to determine effects of interrupted wetness duration (IWD) on sporulation. A split-plot design was used to determine T and W effects, with T (5, 12, 15, 18, 20, 22, 25, 28, and 35°C) as the whole-plot and W (11, 23, 35, 47, and 71 h) as the subplot. Linear and nonlinear mixed models were fitted to the data. Lower and upper limits of sporulation were estimated to be 4 and 36°C, respectively, based on the modeling results, optimum sporulation was near 21°C, and sporulation increased monotonically with increasing wetness duration. Of the examined models, a generalization of the Analytis Beta model fit the data best, based on a collection of goodness-of-fit statistical criteria. To determine effects of IWD, a split-plot was used, with T (12, 15, and 20°C) as the whole-plot and IWD (0, 2, 4, 8, 12, and 24 h) as the subplot. Generally, sporulation declined with increasing IWD. An IWD of 8 h or more resulted in significantly and substantially less sporulation compared to the control (0 h IWD) (P < 0.01). Temporal patterns of spore density in the field were determined using a repeated-measures design, in which spore density and environmental data were measured in the vineyard during and following individual rain events over 3 years. The developed model from the controlled-environment study, coupled with a time-of-season weight function and a dispersal index (based on total rain per rain episode), predicted the trend in spore density over time reasonably well, although the total magnitude of spore density could not be predicted because the density of lesions was not known. Results can be used for improving the accuracy of a disease warning system that currently only considers infection of grapes by P. viticola.