Authors
C. L. Xiao, United States Department of Agriculture – Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Ave., Parlier, CA 93648;
Y. K. Kim, Pace International, Wapato, WA 98951; and
R. J. Boal, Washington State University, Tree Fruit Research and Extension Center, Wenatchee, WA 98801
Abstract
Sphaeropsis pyriputrescens is the cause of Sphaeropsis rot, a recently reported postharvest fruit rot disease of apple. Infection of apple fruit by the fungus is believed to occur in the orchard, and symptoms develop during storage or in the market. S. pyriputrescens also is the cause of a twig dieback and canker disease of apple and crabapple trees. To determine sources of pathogen inoculum in the orchard, twigs with dieback and canker symptoms, dead fruit spurs, dead bark, and fruit mummies on the trees were collected and examined for the presence of pycnidia of S. pyriputrescens. To monitor inoculum availability during the growing season from early May to early November, dead fruit spurs or twigs from Fuji trees, and twigs with dieback from crabapple trees (as a source of pollen for apple production) in a Fuji orchard as well as dead fruit spurs and dead bark from Red Delicious trees in a Red Delicious orchard were sampled periodically and examined for the presence and viability of pycnidia of S. pyriputrescens. To determine seasonal survival and production of pycnidia of the fungus on twigs, apple twigs were inoculated in early December, sampled periodically for up to 12 months after inoculation, examined for the presence of pycnidia, and subjected to isolation of the fungus from diseased tissues to determine its survival. Pycnidia of S. pyriputrescens were observed on diseased twigs, dead fruit spurs and bark, and mummified fruit on both apple and crabapple trees, suggesting that these tissues were the sources of inoculum for fruit infection in the orchard. With the combined observations from two orchards during three growing seasons, viable pycnidia of the fungus were present throughout the year and observed in 50 to 100% of the Fuji trees, >90% of crabapple trees, and 0 to 50% of the Red Delicious trees. S. pyriputrescens was recovered from diseased tissues of inoculated twigs at all sampling times up to 12 months after inoculation. The results suggest that S. pyriputrescens can survive as mycelium in diseased twigs in north-central Washington State and that availability of viable S. pyriputrescens pycnidia is unlikely a limiting factor for infection of apple fruit in the orchard leading to Sphaeropsis rot during storage.