Link to home

First Report of Anthracnose on Peach Fruit Caused by Colletotrichum truncatum in South Carolina

August 2014 , Volume 98 , Number  8
Pages  1,154.1 - 1,154.1

A. Grabke, School of Agricultural, Forest, and Environmental Sciences, Clemson University, Clemson, SC; M. Williamson, Department of Plant Industry, Clemson University; G. W. Henderson, Cooperative Extension Service, Clemson University; and G. Schnabel, School of Agricultural, Forest, and Environmental Sciences, Clemson University



Go to article:
Accepted for publication 1 January 2014.

In July 2013, two diseased peach fruit (Prunus persica (L.) Stokes) of the cv. Sweet Dream were collected from a commercial orchard in Ridge Springs, South Carolina. Affected peaches were at or near maturity and symptoms resembled anthracnose disease caused by Colletotrichum spp. with circular sunken tan to brown lesions that were firm in touch, and had wrinkled concentric rings. The center of the lesion was covered with black acervuli containing setae. To isolate the causal agent, the two symptomatic fruit were surface-sterilized in 10% bleach for 2 min and rinsed with sterile distilled water. Lesions were cut in half, and necrotic tissue from the inside of the fruit was placed on acidified potato dextrose agar (APDA). Flat colonies covered with olive-gray to iron-gray acervuli developed on APDA incubated at 22°C with a 12-h cycle of fluorescent light and darkness. Morphology of acervuli, setae (avg. 90 to 160 μm), conidiophores (up to 90 um long), and conidia (avg. 22 × 3.8 μm) of single spore isolates were consistent with descriptions of Colletotrichum truncatum (Schwein.) Andrus & W.D. Moore (3), a causal agent of anthracnose disease. Genomic DNA was extracted from isolate Ct_RR13_1 using the MasterPure Yeast DNA Purification Kit (Epicentre, Madison, WI). The ribosomal ITS1-5.8S-ITS2 region and a partial sequence of the actin gene were amplified with primer pair ITS1 and ITS4 (4), and primer pair ACT-512F and ACT-783A (2), respectively. A multilocus sequence identification in Q-bank Fungi revealed a 100% similarity with C. truncatum (1). The C. truncatum sequences from the peach isolate were submitted to GenBank (accessions KF906258 and KF906259). Pathogenicity of isolate Ct_RR13_1 was confirmed by inoculating five mature but still firm peach fruits with a conidial suspension of C. truncatum. Peaches were washed with soap and water, surface-disinfected for 2 min with 10% bleach, rinsed with sterile distilled water, and air dried. Dried fruit were stabbed at three equidistant points, each about 2 cm apart, to a depth of 9.5 mm using a sterile 26G3/8 beveled needle (Becton Dickinson & Co., Rutherford, NJ). For inoculation, a 30-μl droplet of conidia suspension prepared in distilled, sterile water (1 to 2 × 104 spores/ml) was placed on each wound; control fruit received sterile water without conidia. Fruit were incubated at 22°C for 2 days at 100% humidity and another 12 days at 70% humidity. Inoculated fruit developed anthracnose symptoms with sporulating areas as described above and the fungus was re-isolated. All control fruit remained healthy. C. truncatum has a wide host range, including legumes and solanaceous plants of the tropics, and is especially common in the Fabaceae family. Its occurrence in a commercial peach orchard is worrisome because control measures may need to be developed that are different from those developed for endemic species, i.e. C. acutatum and C. gloeoporioides, due to differences in disease cycle or fungicide sensitivity. To our knowledge, this is the first report of C. truncatum causing anthracnose on a member of the genus Prunus.

References: (1) P. Bonants et al. EPPO Bull. 43:211, 2013. (2) I. Carbone et al. Mycologia 91:553, 1999. (3) U. Damm et al. Fungal Divers. 39:45, 2009. (4) T. J. White et al. Pages 315-322 in: PCR Protocols: A Guide to Methods and Application. Academic Press, NY, 1993.



Copyright © 2014 The American Phytopathological Society