Link to home

First Report of Fludioxonil Resistance in Botrytis cinerea from a Blackberry Field in Georgia

June 2014 , Volume 98 , Number  6
Pages  848.2 - 848.2

D. Fernández-Ortuño, School of Agricultural, Forest, and Environmental Sciences, Clemson University, Clemson, SC 29634, and Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” - Universidad de Málaga - Consejo Superior de Investigaciones Científica (IHSM-UMA-CSIC), Dept. de Microbiología, Campus de Teatinos, 29071 Málaga, Spain; A. Grabke and P. K. Bryson, School of Agricultural, Forest, and Environmental Sciences, Clemson University, Clemson, SC 29634; E. D. Beasley, Georgia Cooperative Extension Service, Nashville, GA 31639; L. A. Fall, Horticulture Department, University of Georgia, Athens, GA 30602; P. M. Brannen, Plant Pathology Department, University of Georgia, Athens, GA 30602; and G. Schnabel, School of Agricultural, Forest, and Environmental Sciences, Clemson University, Clemson, SC 29634



Go to article:
Accepted for publication 19 December 2013.

Botrytis cinerea Pers. is an important plant-pathogenic fungi responsible for gray mold on more than 230 plant species worldwide, including blackberry (Rubus). One of the main strategies to control the disease involves the application of different classes of fungicides. The phenylpyrrole fludioxonil is currently marketed in combination with the anilinopyrimidine cyprodinil as Switch 62.5WG (Syngenta Crop Protection Inc., Greensboro, NC) for gray mold control. In August 2013, blackberries affected with symptoms resembling gray mold were collected from a field located in Berrien County (Georgia), where Switch 62.5WG had been used extensively over the last 5 years. Three single-spore isolates, each from a different fruit, were obtained and identified as B. cinerea on the basis of morphology and confirmed by a 238-bp PCR amplification product obtained with primer set G3PDH-F1 (5′-GGACCCGAGCTAATTTATGTCACGT-3′), G3PDH-F2 (5′-GGGTGTCAACAACGAGACCTACACT-3′), and G3PDH-R (5′-ACCGGTGCTCGATGGGATGAT-3′). In vitro sensitivity to fludioxonil (Scholar SC, Syngenta) was determined on 1% malt extract agar (MEA) using a conidial germination assay as previously described (4). One isolate was moderately resistant due to growth on medium amended with the discriminatory dose of 0.1 μg/ml fludioxonil and residual growth at 10 μg/ml (4). To assess performance of fludioxonil in detached fruit assays, commercially grown strawberries (24 in total for each isolate and treatment) were rinsed with water, dried, and sprayed 4 h prior to inoculation with either water (control fruit) or 2.5 ml/liter of Scholar SC to runoff using a hand mister. Scholar SC was used because fludioxonil was the sole active ingredient in this product and strawberries were used because latent infections in fresh blackberry fruit interfered with inoculation experiments. This dose reflects the rate recommended for postharvest gray mold control according to the Scholar label. Fruit was stab-wounded with a sterile syringe and inoculated with a 30-μl droplet of conidia suspension (106 spores/ml) of the two sensitive or the resistant isolate. After inoculation, the fruit were kept at 22°C for 4 days. The sensitive isolates developed gray mold on non-treated (2.7 cm lesion diameter) but not on Scholar SC-treated fruit (0.0 cm lesion diameter). The resistant isolate developed gray mold disease on the water-treated control fruit (2.5 cm lesion diameter) and the fungicide-treated fruit (1.8 cm lesion diameter). EC50 values were determined in microtiter assays as described previously (3) using the concentrations of 0.01, 0.04, 0.12, 0.37, 1.1, 3.3, and 10 μg/ml fludioxonil. Values were 0.02 and 0.05 μg/ml for the two sensitive isolates and 3.15 μg/ml for the resistant isolate. All experiments were performed twice. This is the first report of fludioxonil resistance in B. cinerea from blackberry in Georgia. Prior to this study, resistance to fludioxonil in B. cinerea was reported in France, Germany, and only a few states in the United States including Maryland, South Carolina, Virginia, and Washington (1,2). The emergence of resistance to fludioxonil emphasizes the importance of resistance management strategies.

References: (1) D. Fernández-Ortuño et al. Plant Dis. 97:848, 2013. (2) D. Fernández-Ortuño et al. Plant Dis. 98:692, 2013. (3) M. Kretschmer et al. PLOS Pathog. 5:e1000696, 2009. (4) R. W. S. Weber and M. Hahn. J. Plant Dis. Prot. 118:17, 2011.



Copyright © 2014 The American Phytopathological Society