Authors
E. A. Tzortzakakis, Plant Protection Institute, N.AG.RE.F., Hellenic Agricultural Organization-DEMETER, P.O. box 2228, 71003 Heraklion, Crete, Greece;
A. I. Anastasiadis, Center ‘Demeter,’ Hellenic Agricultural Organization - DEMETER, 5th km Drama-Thessaloniki, 66100 Drama, Greece;
K. B. Simoglou, Department of Quality and Phytosanitary Inspections, Rural Economy and Veterinary Directorate, 66100 Drama, Greece; and
C. Cantalapiedra-Navarrete,
J. E. Palomares-Rius, and
P. Castillo, Institute for Sustainable Agriculture (IAS), CSIC, P.O. box 4084, 14080 Córdoba, Spain
Severe plant stunting, chlorosis, and extensive root galling were observed on sunflower (Helianthus annus Pioneer Hi-bred PR64LE19, Dupont) in a commercial field at Agios Athanasios, Drama Province, northeastern Greece at the end of May 2013. Disease symptoms were observed about 1.5 months after planting, and were distributed in patches that covered approximately 2% of the whole cultivated area. Examination of the soil and root samples from selected infected plants revealed the presence of abundant root-knot nematodes. Juveniles, males, and females were extracted by sieving, decanting, and root dissection for identification using morphological traits. Nematode population densities ranging from 100 to 150 J2s per 100 cm3 of soil, and 150 to 3,000 eggs per g of fresh sunflower roots were observed. Identification was confirmed by perineal patterns of females and by sequencing of the D2-D3 expansion segments of 28S ribosomal RNA gene (1,3,4). All identification methods were consistent with typical Meloidogyne hispanica. Morphology of perineal patterns of females and measurements of the second-stage juveniles (J2s) matched those of the original description of M. hispanica (3). Alignment indicated that the D2-D3 sequence (GenBank Accession No. KF501128) was 99% homologous to other sequences of M. hispanica deposited in GenBank from Brazil, Portugal, and Spain (EU443606, EU443608, and GQ375158, respectively), differing in only one nucleotide. Phylogenetic analyses using maximum likelihood of this sequence placed the Meloidogyne sp. in a highly supported (100%) clade that included all M. hispanica sequences available from the GenBank database (4). Root-knot nematodes in general have been reported to cause economic losses in sunflower in Europe (2), but there are no reports of M. hispanica. M. hispanica was first found in Seville Province, southern Spain, infecting rootstocks of Prunus spp. (3). Its distribution has been confirmed worldwide on different agricultural crops. However, to our knowledge, this is the first report of M. hispanica infecting sunflower in Europe and the first report of this species on any crop for Greece. The identification of M. hispanica in sunflower is relevant because it may represent a threat for sunflower production in Greece. Research to develop sunflower varieties resistant to root-knot nematodes should now also consider M. hispanica along with other species of Meloidogyne.
References: (1) K. R. Barker. Page 19 in: An Advanced Treatise on Meloidogyne. Vol. II, Methodology. K. R. Barker et al., eds. North Carolina State University Graphics, Raleigh, NC, 1985. (2) M. Di Vito et al. Nematol. Mediterr. 24:109, 1996. (3) H. Hirschmann. J. Nematol. 18:520, 1986. (4) B. B. Landa et al. Plant Dis. 92:1104, 2008.