Link to home

First Report of Choanephora Blight Caused by Choanephora infundibulifera on Hibiscus rosa-sinensis in Korea

September 2014 , Volume 98 , Number  9
Pages  1,275.1 - 1,275.1

J. H. Park and S. E. Cho, Division of Environmental Science and Ecological Engineering, Korea University, Seoul 136-701, Korea; K. S. Han, Horticultural and Herbal Crops Environment Division, National Institute of Horticultural and Herbal Science, Suwon 441-440, Korea; S. H. Lee, Department of Forest Diseases and Insect Pests, Korea Forestry Research Institute, Seoul 130-712, Korea; and H. D. Shin, Division of Environmental Science and Ecological Engineering, Korea University, Seoul 136-701, Korea



Go to article:
Accepted for publication 12 April 2014.

Hibiscus rosa-sinensis L., commonly known as Chinese hibiscus, is an evergreen flowering shrub belonging to the Malvaceae and is widely cultivated throughout Asia including Korea. In August 2013, blight was observed on Chinese hibiscus in a commercial flower nursery in Seoul, Korea. Initial symptoms began as reddish purple spots at the tip of flowers and expanded to encompass entire flowers. Infected lesions appeared water-soaked, reddish brown, and were followed by rapid rotting of infected tissues. Approximately 50% of the plants surveyed were affected. Monosporous sporangiola formed on infected tissue were transferred to potato dextrose agar (PDA). Fungal colonies were obtained that were at first white with abundant aerial mycelium, and then became yellowish with the appearance of sporangiola. Sporangiophores bearing sporangiola were erect to slightly curved, unbranched, and hyaline. Funnel-shaped secondary vesicles formed on the primary vesicles. Sporangiola were indehiscent, ovoid to subglobose, smooth, non-striated, brown to dark brown, 10 to 27.5 × 8.5 to 17 μm, and sometimes germinated in culture. The fungus was identified as Choanephora infundibulifera (Curr.) D.D. Cunn. based on the morphological and cultural characteristics (2). Voucher specimens were housed in the Korea University Herbarium (KUS). An isolate obtained from KUS-F27535 was deposited in the Korean Agricultural Culture Collection (Accession No. KACC47643) and used for a pathogenicity test and molecular analyses. To confirm identity of the fungus, genomic DNA was extracted with DNeasy Plant Mini Kits (Qiagen Inc., Valencia, CA). The internal transcribed spacer (ITS) region of rDNA and the D1/D2 region of the large subunit (LSU) were amplified with the primers ITS1/ITS4 and NL1/LR3, respectively (3), and sequenced. The resulting 635-bp ITS and 680-bp D1/D2 sequences were deposited in GenBank (Accession Nos. KF486539 and KF486538). A GenBank BLAST search revealed that the ITS sequences showed 100% similarity with that of C. infundibulifera (JN943009) and D1/D2 sequences also showed 100% identity with that of C. infundibulifera (JN939193). A sporangiola suspension (2 × 104 cells/ml) was sprayed over three pots of the shrub, kept in a humid chamber for 2 days, and placed in greenhouse (28°C and 80 to 100% RH). Another three potted plants of the same age were sprayed with sterile water and served as controls. After 4 days, typical blossom blight symptoms, identical to the ones observed in the nursery, developed on the inoculated flowers. No symptoms were observed on controls. C. infundibulifera was re-isolated from inoculated plants. Pathogenicity test was conducted twice with the same results, fulfilling Koch's postulates. Choanephora blight caused by C. infundibulifera on H. rosa-sinenesis has been reported in Japan, Myanmar, Nepal, Guinea, and the United States (1). In Korea, there was one record of this fungus on H. syriacus (1). To our knowledge, this is the first report of C. infundibulifera on H. rosa-sinensis in Korea. This pathogen could be a potential threat to the production of this ornamental shrub over a prolonged period of hot and humid weather.

References: (1) D. F. Farr and A. Y. Rossman. Fungal Databases. Syst. Mycol. Microbiol. Lab., Online publication, ARS, USDA, Retrieved February 28, 2014. (2) P. M. Kirk. Mycol. Pap. 152:1, 1984. (3) G. Walther et al. Persoonia 30:11, 2013.



© 2014 The American Phytopathological Society