Link to home

Ultrastructural and Cytochemical Aspects of the Interaction Between the Mycoparasite Pythium oligandrum and Soilborne Plant Pathogens

June 1999 , Volume 89 , Number  6
Pages  506 - 517

Nicole Benhamou , Patrice Rey , Karine Picard , and Yves Tirilly

First author: Recherche en Sciences de la vie et de la santé, Pavillon Charles-Eugène Marchand, Université Laval, Sainte-Foy, Québec, Canada, G1K 7P4; and second, third, and fourth authors: ESMISAB, Laboratoire de Microbiologie et Sécurité Alimentaire, Université de Brest, Technopole Brest-Iroise, 29280, Plouzané, France


Go to article:
Accepted for publication 4 March 1999.
ABSTRACT

The interaction between the oomycete Pythium oligandrum and various soilborne oomycete and fungal plant pathogens (P. ultimum, P. aphanidermatum, Fusarium oxysporum f. sp. radicis-lycopersici, Verticillium albo-atrum, Rhizoctonia solani, and Phytophthora megasperma) was studied by light and electron microscopy in order to assess the relative contribution of mycoparasitism and antibiosis in the antagonistic process. Scanning electron microscope investigations of the interaction regions showed that structural alterations of all pathogenic fungi and oomycetes (except for Phytophthora megasperma) occurred soon after contact with the antagonist. Light and transmission electron microscope studies of the interaction region between the antagonist and P. ultimum revealed that intimate contact between both partners preceded a sequence of degradation events including aggregation of host cytoplasm and penetration of altered host hyphae. Localization of the host wall cellulose component showed that cellulose was altered at potential penetration sites. A similar scheme of events was observed during the interaction between P. oligandrum and F. oxysporum f. sp. radicis-lycopersici, with the exception that complete loss of host protoplasm was associated with antagonist invasion. The interaction between P. oligandrum and R. solani resulted in an abnormal deposition of a wall-like material at potential penetration sites for the antagonist. However, the antagonist displayed the ability to circumvent this barrier and penetrate host hyphae by locally altering the chitin component of the host hyphal wall. Interestingly, antagonist cells also showed extensive alteration as evidenced by the frequent occurrence of empty hyphal shells. In the case of Phytophthora megasperma, hyphal interactions did not occur, but hyphae of the plant pathogen were damaged severely. At least two distinct mechanisms appear to be involved in the process of oomycete and fungal attack by P. oligandrum: (i) mycoparasitism, mediated by intimate hyphal interactions, and (ii) antibiosis, with alteration of the host hyphae prior to contact with the antagonist. However, the possibility that the antagonistic process may rely on the dual action of antibiotics and hydrolytic enzymes is discussed.


Additional keywords: biological control, gold cytochemistry.

© 1999 The American Phytopathological Society