Department of Plant Biology and Pathology and The Biotechnology Center for Agriculture and the Environment, Rutgers University, New Brunswick 08901
ABSTRACT
Ribosome-inactivating proteins (RIPs) are N-glycosidases that remove specific purine residues from the sarcin/ricin (S/R) loop of the large rRNA and arrest protein synthesis at the translocation step. In addition to their enzymatic activity, RIPs have been reputed to be potent antiviral agents against many plant, animal, and human viruses. We recently showed that pokeweed antiviral protein (PAP), an RIP from pokeweed, inhibits translation in cell extracts by binding to the cap structure of eukaryotic mRNA and viral RNAs and depurinating these RNAs at multiple sites downstream of the cap structure. In this study, we examined the activity of three different RIPs against capped and uncapped viral RNAs. PAP, Mirabilis expansa RIP (ME1), and the Saponaria officinalis RIP (saporin) depurinated the capped Tobacco mosaic virus and Brome mosaic virus RNAs, but did not depurinate the uncapped luciferase RNA, indicating that other type I RIPs besides PAP can distinguish between capped and uncapped RNAs. We did not detect depurination of Alfalfa mosaic virus (AMV) RNAs at multiple sites by PAP or ME1. Because AMV RNAs are capped, these results indicate that recognition of the cap structure alone is not sufficient for depurination of the RNA at multiple sites throughout its sequence. Furthermore, PAP did not cause detectable depurination of uncapped RNAs from Tomato bushy stunt virus (TBSV), Satellite panicum mosaic virus (SPMV), and uncapped RNA containing poliovirus internal ribosome entry site (IRES). However, in vitro translation experiments showed that PAP inhibited translation of AMV, TBSV, SPMV RNAs, and poliovirus IRES dependent translation. These results demonstrate that PAP does not depurinate every capped RNA and that PAP can inhibit translation of uncapped viral RNAs in vitro without causing detectable depurination at multiple sites. Thus, the cap structure is not the only determinant for inhibition of translation by PAP.