Link to home

A Satellite RNA of Ophiostoma novo-ulmi Mitovirus 3a in Hypovirulent Isolates of Sclerotinia homoeocarpa

September 2004 , Volume 94 , Number  9
Pages  917 - 923

F. Deng and G. J. Boland

Department of Environmental Biology, University of Guelph, Guelph, ON, N1G 2W1


Go to article:
Accepted for publication 23 March 2004.
ABSTRACT

Two genetically distinct double-stranded RNA (dsRNA) elements were identified in hypovirulent isolates of Sclerotinia homoeocarpa, the causal agent of dollar spot of turfgrass. The large dsRNA (L-dsRNA) was consistently present in all hypovirulent isolates, whereas the small dsRNA (S-dsRNA) was found only in some hypovirulent isolates. Virulence comparisons revealed that there was no significant difference between isolates containing one or both dsRNAs. Therefore, the L-dsRNA appears to be the genetic determinant of hypovirulence, while the S-dsRNA is not essential for hypovirulence in S. homoeocarpa. The L-dsRNA in hypovirulent isolate Sh12B of S. homoeocarpa was previously characterized as a fungal mitochondrial virus and designated Ophiostoma novo-ulmi mitovirus 3a-Sh12B (OnuMV3a-Sh12B) because it was conspecific with O. novo-ulmi mitovirus 3a-Ld from O. novo-ulmi, the causal agent of Dutch elm disease. In the present study, the nucleotide sequences of the S-dsRNAs (738 to 767 nucleotides) in hypovirulent isolates Sh12B, Sh279B, and Sh286B were determined. Nucleotide sequence analysis indicated that the S-dsRNA was not derived from the OnuMV3a dsRNA and it could not encode an RNA-dependent RNA polymerase. These results are consistent with biological data that the S-dsRNA was always associated with the L-dsRNA and was never found independently. Therefore, the S-dsRNA can be regarded as a satellite RNA of OnuMV3a in S. homoeocarpa. Northern blotting analysis indicated that nucleic acid extracts from isolate Sh12B of S. homoeocarpa contained more single (+) stranded RNA than dsRNA for this satellite RNA. The 5′- and 3′-terminal sequences of the positive strand of the S-dsRNA each could be folded into a stem-loop structure and the terminal 21 nucleotides were complementary to each other, potentially forming a panhandle structure.


Additional keyword: biological control.

© 2004 The American Phytopathological Society