Link to home

Genetic Diversity and Structure of the Apiosporina morbosa Populations on Prunus spp.

August 2005 , Volume 95 , Number  8
Pages  859 - 866

Jinxiu Zhang , W. G. Dilantha Fernando , and William. R. Remphrey

University of Manitoba, Department of Plant Science, Winnipeg, Manitoba, R3T 2N2, Canada


Go to article:
Accepted for publication 14 March 2005.
ABSTRACT

Populations of Apiosporina morbosa collected from 15 geographic locations in Canada and the United States and three host species, Prunus virginiana, P. pensylvanica, and P. padus, were evaluated using the sequence-related amplified polymorphism (SRAP) technique to determine their genetic diversity and population differentiation. Extensive diversity was detected in the A. morbosa populations, including 134 isolates from Canada and the United States, regardless of the origin of the population. The number of polymorphic loci varied from 6.9 to 82.8% in the geographic populations, and from 41.4 to 79.3% in the populations from four host genotypes based on 58 polymorphic fragments. In all, 44 to 100% of isolates in the geographic populations and 43.6 to 76.2% in populations from four host genotypes represented unique genotypes. Values of heterozygosity (H) varied from 2.8 to 28.3% in the geographic populations and 10.2 to 26.1% in the populations from four host genotypes. In general, the A. morbosa populations sampled from wild chokecherry showed a higher genetic diversity than those populations collected from other host species, whereas the populations isolated from cultivated chokecherry, P. virginiana ‘Shubert Select’, showed a reduction of genetic diversity compared with populations from wild P. virginiana. Significant population differentiation was found among both the geographic populations (P < 0.05) and populations from different host genotypes (P < 0.02). In the geographic populations, most of populations from cultivated and wild P. virginiana were closely clustered, and no population differentiation was detected except for the populations from Morris, Morden, and Winnipeg, Manitoba, Canada. Furthermore, the populations from P. virginiana in the same geographic locations had higher genetic identity and closer genetic distance to each other compared with those from different locations. Four populations from P. virginiana, P. pensylvanica, and P. padus, were significantly differentiated from each other (P < 0.02), except there was no differentiation between the Shubert Select and wild chokecherry populations (>P> = 0.334). Indirect estimation of gene flow showed that significant restricted gene flow existed between populations from different regions and host species. Gene flow rates (Nm) varied from <1 to 12.5, with higher gene flow rates among population pairs from the same host species (P = 1.000). The analysis of molecular variance revealed that a major genetic variance source came from the genetic variation among isolates within populations regardless of the origin and host genotype of the population. Although some locations had a limited number of isolates, the results of this study clearly showed that the genetic diversity and population differentiation of A. morbosa were closely associated with host genotypes and geographic locations, but mostly with the former.


Additional keywords: Dibotryon morbosum , genotypic diversity .

© 2005 The American Phytopathological Society